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Surface Transit Speed Updating 

Background 
An important element of transit assignment modelling that TMG, nor arguably regional demand 

modellers in general, have not previously addressed is the updating of surface transit speeds as a 

function of roadway congestion. Currently, transit segment speeds for non-exclusive right-of-way use 

average line speeds normalized by the length of the section. This method uses GTFS data that specifies 

trip times in order to calculate the average line speed. For exclusive right of way lines, stop to stop 

speeds are averaged from stop times in the GTFS data and encoded into the network. These speeds are 

then used to calculate transit times along that section.  

Though this approach has been standard for a number of years, it is not forecastable. The process of 

generating this GTFS data would also be time intensive and subject to a number of assumptions, making 

it not feasible to create. Currently, applying the base year GTFS line speeds to future scenarios can lead 

to unrealistic results. In particular, failure to account for shared right-of-way (SROW) congestion effects 

on transit speed and times may bias model assignments in favour of SROW routes relative to exclusive 

right-of-way (EROW) routes. Therefore, a new forecastable dynamic method is required for use in future 

scenarios that is relatively simple to avoid more detailed future inputs, which can become an entire 

issue to obtain as well. 

Literature Review 
A literature review searching for existing surface transit speed updating implementations was 

undertaken. Various past implementations took account congested link travel time, added with dwell 

time. Two approaches to the modelling of link travel time were observed: a) travel time as a function of 

various parameters such as area type (AT), land type (LT), and facility type (FT), and b) travel time as a 

function of congested automobile speed 1-6, 10-13, 16. The former utilized a lookup table of travel time with 

independent variables of AT, LT, and AT. Although this method stood out for its feasibility, it was not 

used in this surface transit travel time model as it would not produce a forecastable model. This is 

because determining future, new land use patterns for every transit link would be extremely difficult to 

do with any reliability, as well as extremely labour intensive. The second approach linearly correlates 

automobile and transit congested speeds. Studies conducted in Jacksonville, Florida strongly 

demonstrated the linear relationship between automobile and transit congested speed at all speeds 16. 

TMG model development proceeded with the latter approach, as it would produce a forecastable model 

that more closely represents reality.  

Further literature review was conducted to review existing surface transit delay models, namely for 

dwell time and intersection delay. Dwell time models that were commonly observed a) assumed 

constant dwell time by service type, such as local and express transits, or b) produced dwell time as a 

function of number of boarding and alighting passengers (examples of the latter include the TCQSM 

method or Levinson’s approach 1, 14, 16, 17). Studies done in the District of Columbia indicated that the 

number of boarding and alighting passengers do in fact play an important role in dwell time 17. It was 

decided to proceed with the latter method to better represent the characteristics of dwell time. The 

former method would not reflect the true nature of dwell time and the results obtained would be 

excessively aggregated. Although various intersection delay models were found, it was decided to 

remove intersection delays from the model as a) intersection delays would not have significant impact 



on our macroscopic model, and b) it would be very difficult to implement in a static EMME network 7-9, 

15. 

Proposed Model 
In order to update transit speed for future scenarios, the following model is proposed. For each segment 

in the transit line, the travel time on that section is assumed to be a function of the Auto Travel Time on 

that section, plus an additional dwell time to account for the number of stops and the number of 

passengers boarding and alighting. 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 =  𝛽1𝐴𝑢𝑡𝑜 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 + 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 

Where  𝛽1 is a conversion factor to account for the fact that transit vehicles travel at different speeds 

than auto vehicles. Auto travel time is obtained for an EMME Road assignment and is then used in this 

model. Dwell time is further modelled as  

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = [𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠][𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟]

+ [𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠][𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟]

+ ∑ 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟 𝑆𝑡𝑜𝑝
𝑆𝑡𝑜𝑝𝑠

 

Where the number of boarding and alighting passengers is obtained from a transit assignment in EMME 

and then normalized by how many runs there were in the time period. For example, if a line had a 

headway of 30 minutes during the 3-hour AM period, there would have been 6 runs during that time. If 

the total number of boarding passengers was 1200 at the node, the normalized boarding number would 

then have been 200 at the node. The ∑ 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟 𝑆𝑡𝑜𝑝𝑆𝑡𝑜𝑝𝑠  term is there to account for 

the number of stops in the route. Since in the GTAModel workflow, extra cosmetic nodes (including 

transit stops) are removed to add space for the hypernetwork, there needs to be a term that reflects the 

fact that in real life, busses do stop at these removed stops and have a “constant” dwell time on top of 

which boarding and alighting passengers add to.  

This model, which closely represents the nature of surface transit travel behaviour, is implemented to 

the network with two assumptions: a) automobile travel time from EMME road assignment is 

representative,1 and b) the number of boarding and alighting passengers from EMME transit assignment 

is true. The potential flaw these assumptions may cause is that the model may not converge if the 

assignment results are inaccurate. 

Calibration 
The parameters that need to be estimated in this model are the conversion factor ( 𝛽1), the Boarding 

time per passenger, alighting time per passenger, and the default duration per stop. The remaining 

transit assignment parameters were assumed to be the same as the regular GTAModel transit 

assignment. 

The first attempt at calibrating these parameters was to conduct a Particle Swarm Optimization 

algorithm using eXtensible Travel Modelling Framework (XTMF), a modular program developed and 

maintained by TMG. This attempt involving trying to calibrate parameters such that they would fit the 

                                                           
1 Note that the number of surface transit vehicles operating in the shared-ROW link is included in the calculation of 
roadway congestion levels within each link. 



GTFS stop times data. However, because the EMME transit assignment requires segment speeds to 

generate boarding and alighting numbers, which would then change the segment speed, this approach 

led to a very turbulent hyperplane in which parameters failed to converge. 

An alternate approach was then found with the help of the Toronto Transit Commission’s (TTC) 

Automated Person Count (APC) data. The TTC has outfitted APC technology on approximately 10% of its 

busses which are then rotated across the network to collect data over time on all its routes. The TTC was 

kind enough to provide 1 days’ worth of APC data to TMG in order to help with the analysis. This data 

set consisted of 972 csv files, one for each bus on the road. 

This data was first cleaned to ignore the first five entries in every file as these corresponded to the time 

the bus spent in the bus bay. Furthermore, any entry that had no latitude and longitude for stop location 

was removed as well as any entry that had a dwell time of greater than 90 seconds was removed to 

adjust for midblock and other longer layovers. In order to account for the fact that dwell time at certain 

stops will be affected by the intersection delay (drivers could be leaving the doors open while waiting), 

stops at intersections were removed. The remaining entries were analysed to determine dwell time as 

well as total boardings and alightings, and multiple linear regression using OLS with the statsmodels api 

in python was performed. The following regression models were attempted 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 𝛾1(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠 + 𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 𝛾2(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠 + 𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) + 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 𝛾3(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠) + 𝛾4𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 𝛾5(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠) + 𝛾6𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) + 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 𝛾7max(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠, 𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 𝛾8max(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠, 𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) + 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 



Where  𝛾𝑥 is the parameter being estimated and Default duration is the constant in the model. The 

model with the best fit is shown in Figure 1 with it generating dwell time in seconds.  

 

Figure 1 Best fitting regression model using the TTC APC dataset 

 

This results in the following model 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 (𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑡𝑜𝑝) = 1.96(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠) + 1.12(𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) + 7.43 

With this dwell time model, the auto coonversion factor still needs to be estimated. Two different 

approaches lead to similar results. 

In order to determine the auto conversion factor, the average line speeds of the EMME lines was 

utilized. As a reminder, these line speeds were generated from GTFS trip data which specifies start and 

end time for each trip. Since each unique trip is inputted into EMME as a separate line, these lines can 

then have average speeds depending on the time period (AM,MD,PM,EV). Since the speed and length of 

the lines is known, average time in seconds can be calculated for each line. This represents the Total 

Transit Time, which can be represented in the following way 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑖𝑚𝑒 = 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 

Since the number of boardings and alightings can be modelled using EMME and the number of stops is 

known (again due to EMME), the dwell time can be calculated as follows 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 1.96 (
𝑇𝑜𝑡𝑎𝑙 𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

𝑅𝑢𝑛𝑠
) + 1.12 (

𝑇𝑜𝑡𝑎𝑙 𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠 𝑖𝑛 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

𝑅𝑢𝑛𝑠
)

+ ∑ 7.43
𝑆𝑡𝑜𝑝𝑠

 



The total number of runs is calculated using number of minutes in time period (ex. AM is 3 hours or 180 

minutes) divided by the headway (in minutes). This then gives us the total dwell time on that line. 

Rearranging the above equation we get 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑖𝑚𝑒 = 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑖𝑚𝑒 − 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 

This will then allow us to calculate the running time in seconds for each line. Using EMME, we can model 

how long a car would take to travel along the same route as the bus. On locations where auto vehicles 

were not allowed, such as inside stations etc, auto time was assumed to be 20 km/hr. This would then 

give us Auto Time. The correlation factor would then be equal to  

𝛽1 =
𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝐴𝑢𝑡𝑜 𝑇𝑖𝑚𝑒
 

When averaging this parameter across all lines in the EMME network, other than GO trains, Subways, 

and Streetcars, an average 𝛽1 of 1.825 was obtained. However, it was decided not to use a global 

average here but to instead separate it out between different time periods. Therefore there would be 

an auto conversion factor for each time period.  

In addition to the TTC dataset, York Region Transit was also able to provide an APC dataset of their 

busses. This dataset was to be used to help calibrate the so called “905 Regions” that surround Toronto, 

rather than simply using TTC numbers for the entire GTA region.  

However, when estimating a regression model on the dataset, it showed a much worse fit than the TTC 

Model as shown in Figure 2. 

 

Figure 2 Regression results for the best fitting model using the YRT dataset 

                             



The large constant value shown was also worrying as it is theoretically troubling as to why a bus would 

stop for a minimum of 21 seconds at a stop to let a single person alight. This figure may have some 

bleeding of the traffic signal effect into the dwell time calculations. Nevertheless, an attempt was made 

to find the auto conversion factor but it was found that transit vehicles travel 42% faster than auto 

vehicles. It is known that transit vehicles cannot travel faster than auto vehicles especially in a macro 

model, thus a different approach was need to model vehicles in York Region. 

An attempt was made to simply transfer over the TTC dwell time and instead of using a global auto 

conversion, use a separate conversion factor for the different line groupings present in the GTA. 

However, when looking at the standard deviations of the auto conversion factor as shown in Table 1, it 

shows that while the averages for the line groupings are different, they are within the standard 

deviation from each other for all cases other than GO Bus. Therefore, only GO Bus was given its own 

auto correlation ratio for use in the model.  

Table 1 - Auto Correlation Factors for all Agencies 

Service & Time 
Period 

Average of 
factor 

StdDevp of factor 

AM 1.663156817 0.401992592 

Brampton 1.839546954 0.36547983 

Durham 1.644706092 0.375871363 

GO Bus 1.226575054 0.223644081 

Halton 1.622832129 0.358320525 

Hamilton 1.839556825 0.333099982 

Mississauga 1.691439052 0.284806287 

TTC Bus 1.749014034 0.429402755 

York VIVA 1.654791706 0.328115269 

YRT 1.525285827 0.335356205 

EV 1.923648799 0.41217722 

Brampton 2.158933035 0.281247738 

Durham 1.891922371 0.367679759 

GO Bus 1.477074233 0.187206079 

Halton 1.935310706 0.505510866 

Hamilton 1.867344464 0.370408653 

Mississauga 1.890103472 0.228122715 

TTC Bus 2.050018881 0.426032959 

York VIVA 2.084797198 0.238398283 

YRT 1.756330238 0.365145457 

MD 2.055619866 0.481192679 

Brampton 2.211268508 0.340129675 

Durham 1.895153316 0.357235864 

GO Bus 1.554290607 0.226851532 

Halton 1.898389565 0.424583505 

Hamilton 2.035704292 0.375937911 

Mississauga 2.025729562 0.318286406 



TTC Bus 2.225772712 0.436116333 

York VIVA 2.272269742 0.350778998 

YRT 2.016443691 0.708281777 

PM 1.637378565 0.438409066 

Brampton 1.845373985 0.333026595 

Durham 1.591210046 0.342351024 

GO Bus 1.179986807 0.224650256 

Halton 1.629150828 0.450549762 

Hamilton 1.809206969 0.357433109 

Mississauga 1.589550242 0.285744866 

TTC Bus 1.711252369 0.473374901 

York VIVA 1.703099741 0.361828829 

YRT 1.598641776 0.441310637 

 

Due to the fact that GO Busses have now been removed from the average conersion factor, new 

conversions are summarized in Table 2 below, along with the boarding and alighting times.  

Table 2 - Auto Correlation Parameters 

Parameter Value 

Boarding Duration per Passenger 1.9577 

Alighting Duration Per Passenger 1.1219 

Default Dwell Time 7.4331 

Auto Conversion Factor AM (Bus) 1.704750704 

Auto Conversion Factor MD (Bus) 1.965837753 

Auto Conversion Factor PM (Bus) 2.118648855 

Auto Conversion Factor EV (Bus) 1.684546052 

Auto Conversion Factor AM (GO Bus) 1.226575054 

Auto Conversion Factor MD (GO Bus) 1.477074233 

Auto Conversion Factor PM (GO Bus) 1.554290607 

Auto Conversion Factor EV (GO Bus) 1.179986807 
 

The final model (for the AM period on a TTC Bus line) then looks like 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 (𝑜𝑛 𝑎 𝑠𝑒𝑔𝑚𝑒𝑛𝑡) = 1.70(𝐴𝑢𝑡𝑜 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒) + 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 

Where Dwell Time is equal to the following 

𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 = 1.96(𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑠) + 1.12(𝐴𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠) + ∑ 7.43
𝑆𝑡𝑜𝑝𝑠

 

Streetcar Model 
Streetcars in Toronto presented a different problem as they represent behaviour that was not found in 

the TTC dataset. However, before estimating new parameters for the transit assignment, it was crucial 

to apply a dwell time model to streetcars as that would lead to more people using the streetcars as they 

face no penalties in terms of boarding and alighting. Since streetcar data was not available, it was 



assumed that the bus dataset model would be applied, but with a few tweaks. Streetcars in 2011 did not 

have all door boarding in operation so the model disregards this, but in 2016 all-door boarding in 

streetcars had come into affect. This blurs the lines between boarding and alighting since it is inherently 

assumed that in busses there are only two doors. Therefore, we estimated a new model using the bus 

dataset that used the total number of boardings and alightings at stop leading to the model shown in 

Figure 3. 

 

Figure 3 Regression results when estimating a streetcar model 

When the 2016 model is estimated the total number of boardings and alightings can then be divided by 

the number of doors available on the streetcar (in multiples of two).  

This model also requires a new auto conversion factor. This presents a new issue whereupon streetcars 

often travel through segments of road where they have exclusive right of way, which means no auto 

times on that segment. This was solved using the following formulas  

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑖𝑚𝑒 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 − 𝑇𝑜𝑡𝑎𝑙 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 

Since dwell time is known, we can then find the Transit Running Time 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑖𝑚𝑒 − 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 

Since the length of the line is known as well as the length of the EROW sections and the length of the 

SROW sections, we can then obtain the line running speed 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 =
𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
 

We can then obtain the time spent in the EROW and SROW sections respectively using the following 

𝐸𝑅𝑂𝑊 𝑇𝑖𝑚𝑒 =
𝐸𝑅𝑂𝑊 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑
 



𝑆𝑅𝑂𝑊 𝑇𝑖𝑚𝑒 =
𝑆𝑅𝑂𝑊 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑
 

The auto time can then be calculated from EMME on the SROW sections and the ratio can then be used. 

𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑅𝑂𝑊 𝑇𝑖𝑚𝑒

𝐴𝑢𝑡𝑜 𝑇𝑖𝑚𝑒 𝑜𝑛 𝑆𝑅𝑂𝑊
 

Table 3 then gives us the following parameters for streetcars over the time periods: 

Table 3 - Streetcar Auto Correlation Factors 

Time Period Auto Conversion Ratio 

Default Dwell Time 7.5002 s 

Time to Board/Alight 1.496 s 

AM 1.841448614 

EV 2.064731175 

MD 2.253656208 

PM 1.689979987 

 

The numbers provided above are for two-door streetcars. To forecast for the future, the total number of 

boardings and alightings for each vehicle must be divided by the number of doors and then multiplied by 

two. This will naturally assume that all doors are used equally in the streetcar, however that is a 

relatively minor assumption.  

Implementation and Testing 
In order to implement this model in an EMME and XTMF Framework, a new module was created for 

Transit Assignment. Since the EMME congested transit assignment algorithm already utilizes an 

iterational approach to transit assignment as it attempts to find convergence on congested lines, it 

seemed inefficient to have a larger loop that updates dwell times after each assignment. Therefore, 

TMG utilized the congested transit assignment algorithm from EMME but inserted a dwell time updated 

script which updates the dwell times between each iteration of the extended transit assignment. This 

allows for much faster transit assignment converging times and a much more efficient algorithm. 

In order to test the Surface Transit Updating model, it was decided to run future year forecasted 

demand from GTAModel V4.0 through the model in order to determine whether the results are 

acceptable for a heavily congested scenario. Therefore the following steps were taken: 

1. A check for the model was done to see if the line speeds reverted back to the original line 

speeds that they were based on. This was done by comparing the original line speeds (calculated 

from GTFS) to the line speeds calculated from a Transit Assignment utilizing Surface Transit 

Speed Updating. The speeds and times were then plotted and are shown in Figure 4 and Figure 5 

below. 

 



 

Figure 4 Graph showing the difference in line speeds between the two assignments 

 

Figure 5 Graph showing the difference in transit line travel time between the two assignments 

 

There appears to be on the whole, a good fit to the trend lines, however the model does appear 

to be slightly under-predicting line speeds, leading to longer total travel times on the transit 

lines. 
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2. Since the parameters that were used for the transit assignment were not calibrated with Surface 

Transit Speed Updating, it is necessary to calibrate them. This was done using a Particle Swarm 

Optimization within the XTMF Framework to generate the new parameters. The assignment was 

calibrated to the TTS boardings for the AM and PM time periods. After calibration, the 

assignment performed slightly better than the regular assignment. This was expected because 

the Surface Transit Speed model was assembled to recreate the current data, but have the 

ability to generate better forecasts. Therefore, it wasn’t expected to be too much better than 

the current assignment for the base year. The parameters as well as the fitness values is given in 

Table 4 below. The fitness value is the RMSE of the observed boardings subtracted by the 

modelled boardings. The lower the value is, the closer the model is to representing the true 

data. 

Table 4 - Parameters after PSO calibration 

Parameter Value 

Fitness 502.5708 

Wait Time Perception 1.766078 

PD1.Walk Perception Value 1.093058 

Toronto.Walk Perception Value 2.623971 

Non-Toronto.Walk Perception Value 1.884335 

Toronto Centroid Connectors.Walk Perception Value 1.072108 

Non-Toronto Centroid Connectors.Walk Perception Value 2.304927 

Subway.Walk Perception Value 3.977788 

Fare Perception 7.50832 

Boarding Penalties.Brampton.Penalty 12.40961 

Boarding Penalties.Durham.Penalty 11.27182 

Boarding Penalties.GO Bus.Penalty 5.817453 

Boarding Penalties.GO Train.In Vehicle Time Perception 0.833476 

Boarding Penalties.GO Train.Penalty 5.424176 

Boarding Penalties.Halton.Penalty 11.94058 

Boarding Penalties.Hamilton.Penalty 9.817667 

Boarding Penalties.MiWay.Penalty 7.190769 

Boarding Penalties.YRT.Penalty 5.229805 

Boarding Penalties.VIVA.Penalty 12.27566 

Boarding Penalties.Streetcar.Penalty 11.25108 

Boarding Penalties.TTC Bus.Penalty 11.66129 

Subway and GO Rail Congestion Exponent 3.53439 

EROW Streetcar Congestion Exponent 5.316258 

SROW Streetcar Congestion Exponent 4.609741 

Regular Bus Congestion Exponent 5.8552 

GO Bus Congestion Exponent 4.810059 

 



3. GTAModel V4 has a number of modules that have parameters that are calibrated to the EMME 

utils from a base year transit assignment. In the interest of time, all of these were not re-

calibrated for Surface Transit Speed Updating (STSU), but instead a scale parameter calculated 

by dividing the Regular utils and the Surface Transit Speed Updating utils was found and applied. 

This scale parameter was found to be 0.97. This means that the perceived costs of travelling by 

transit were found to be slightly lower when surface transit speed was applied. 

4. A full run of GTAModel V4 with STSU was then run for the base year and compared to a run 

without STSU. This produced the results summarized in Table 5. 

 

Table 5 - GTAModel trips by mode for 2011 

Mode Reg-Trips-2011 STSU-Trips-2011 
Change in 

Value 
 (Reg-STSU) 

Percentage 
Change (using 

Reg as the Base) 

Auto 6,685,710 6,613,182 72,528 1% 

Bicycle 234,216 202,395 31,821 14% 

Carpool 598,158 566,117 32,041 5% 

DAT 192,272 225,135 - 32,864 -17% 

Passenger 938,161 931,483 6,678 1% 

RideShare 493,847 488,311 5,536 1% 

Schoolbus 227,148 218,147 9,001 4% 

Walk 775,491 736,268 39,223 5% 

WAT 1,832,457 1,999,006 -  166,548 -9% 

Total 11,977,459 11,980,044   

 

As can be seen, the total number of trips has not changed much in the model, as the synthetic 

population that was used was the same across both scenarios. Furthermore, all other 

employment and trip generation parameters had the same value. Where the model differs the 

most is in the gain in Walk Access Transit (WAT) and Drive Access Transit (DAT) trips when STSU 

is implemented. These trips are redistributed across the other modes with bicycle and walk 

seeing the greatest relative change, while auto sees the most trips gained. This is due to the 

perceived costs of travelling by transit has decreased by a scale parameter of 0.97 as mentioned 

above. 

 

Note that these numbers are after one iteration of the model with no feedback from EMME. 

Once the feedback from EMME starts, it is expected that the additional riders on the transit 

system will once again increase the costs of travelling on the transit system, leading to a 

redistributing of the trips, most likely back to around the same number as the regular scenario. 

Furthermore, in the interest of time, the mode choice model has not been recalibrated with the 

new transit assignment. Instead, the scale parameter was used on the Perceived Travel Times 

coming out of EMME in order to perform a rough recalibration.  

 

5. A future year forecast population was generated based on a simple growth factor. According the 

Government of Ontario, the population in the GTAModel area is expected to grow 157% by 



2041 from the base year of 2011. This growth factor was applied as an expansion factor in the 

synthetic population of persons and households for a 2041 Scenario. 

 

6. This future year scenario was run through GTAModel and generated the following results shown 

in Table 6 

 

Table 6 - GTAModel trips by mode for 2041 

Mode Reg-Trips-2041 STSU-Trips-2041 
Change in 

Value 
(Reg-STSU) 

Percentage 
Change (using 

Reg as the Base) 

Auto 10,686,903 10,585,415 101,487 1% 

Bicycle 367,562 317,620 49,941 14% 

Carpool 939,320 888,871 50,448 5% 

DAT 302,033 353,291 - 51,259 -17% 

Passenger 1,475,055 1,463,940 11,115 1% 

RideShare 776,427 767,656 8,771 1% 

Schoolbus 354,215 340,048 14,168 4% 

Walk 1,217,059 1,154,376 62,682 5% 

WAT 2,915,117 3,185,172 - 270,055 -9% 

Total 19,033,690 19,056,389   

 

The numbers in the 2041 scenario show almost the same trend as above. As this is only one 

iteration of GTAModel with no feedback from EMME, it is expected that due to the massively 

congested nature of the transportation system, transit will be massively affected. This means 

that further iterations of the model will cause a significant change in the number of transit 

riders.  

7. The demand from this future assignment was assigned to EMME to determine the level of 

congestion in the system. Figure 6 shows the perceived travel times extracted out from the 2011 

scenario of GTAModel with surface transit speed updating divided by the perceived travel times 

from the regular run of GTAModel. This has been aggregated to a PD level and shown in the 

form of a heat map, where the red cells indicate that the surface transit updating network is 

presenting longer perceived travel times, green cells indicate that the regular assignment has 

longer perceived travel times, and white cells indicate that they both are perceived to take the 

same amount of time. The heat map shows that even though the initial mode choice has 

assigned more transit trips, the feedback from EMME will rebalance the mode choice by 

changing the utils of the transit choice. 

 



 

Figure 6 Heat map showing the differences in perceived travel times between the regular assignment and the surface transit 
speed assignment for 2011 

 

Figure 7 shows the same kind of heat map as above, but instead for the 2041 scenario. As this 

scenario is more congested, we expect there to be a greater difference between the regular 

model run and the surface transit speed model run and this can be clearly seen as the heat map 

is much redder than Figure 6. As above, red indicates higher perceived travel times for the 

surface transit speed model, green indicates higher perceived travel times for the regular run, 

and white indicates that both the assignments are perceived to take a similar amount of time. 

Again this shows that the mode choice will rebalance the transit users by changing the travel 

times associated with transit and is anticipated to lead to less users of the transit system in 

general.  



 

Figure 7 Heat map showing the differences in perceived travel times between the regular assignment and the surface transit 
speed assignment for 2041 

Conclusion 
The current GTAModel has had a problem with forecasting transit users in the future due to the neglect 

of dwell times and other auto vehicles on its surface transit system. This is why the Surface Transit 

Speed Updating model has been developed that actively takes into account congestion on the roads and 

the number of transit users to determine the speed of transit vehicles. This model is based on a 

combination of observed APC data obtained from the TTC as well as GTFS data that is provided by all 

agencies in the GTHA. Dwell times were obtained from the APC data and then used to generate auto 

congestion parameters in combination with GTFS data. Testing of this model was done with GTAModel 

V4, however, due to limited time and resources, in depth testing could not occur. A scale parameter was 

used to try to recalibrate GTA for use with STSU instead of manually recalibrating all of the parameters 

present in the model. Furthermore, only 1 iteration of the model was used. The demand from this 

iteration was assigned in EMME and compared to each other. It was seen that the surface transit speed 

updating assignment algorithm does in fact lead to greater perceived travel times for future year 

congested assignments, which is to be expected and can then perhaps lead to more accurate transit 

results.  
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