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Abstract 

The roadway performance model is one component of travel demand model systems, whose 

primary purpose is to replicate the congestion effect in traffic assignment. In this sub-model, 

accurate estimates of roadway travel time (delay), which is sensitive to road traffic volumes, have 

a principal role in properly assigning trips to various paths through the road network. Historically, 

one of the main challenges in developing these volume-delay models was the availability of data. 

Thanks to emerging data sources, the speed and volume for a wide range of roadway segments in 

the network are available in excellent temporal and spatial resolution. This study proposes a multi-

stage machine-learning-based framework to clean, classify and calibrate roadway performance 

models of various roadway functional classes in the Greater Toronto and Hamilton Area. Recurrent 

spatial and temporal trends of roadway performance are further investigated, and distinctive 

patterns are observed for road segments with specific physical attributes.  
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Chapter 1  

 Introduction 

1.1 Background and Motivation 

In urban regions, traffic congestion is progressively becoming a severe problem. This phenomenon 

is causing a loss of productivity and travel time. Traffic congestion can be defined as travel time 

delay experienced by road users while travelling from origin to destination. The excessive traffic 

demand on capacity-restrained roadways is one of many factors that contribute to traffic 

congestion. If we consider the transportation system as a traditional economic system, traffic 

demand is one subsystem being served by another subsystem which is transportation 

infrastructural supply. In order to mitigate the congestion in cities, both sides of this system should 

be analyzed, and practical actions should be taken. So, planners and decision-makers need a tool 

to evaluate local transport needs and decide about policy changes and investments in future 

infrastructure development projects. Answering transportation-, land use- and environment-related 

research/policy questions is not possible unless they utilize an evidence-based tool. This is where 

the need for travel demand models emerges for making informed decisions. These models aim to 

predict future travel patterns by asking "what if" questions and seeing the interaction of 

hypothetical travel demand and network supply. A series of mathematical models form the travel 

demand model, and the last step is the trip assignment. This step is the most computationally-

intensive phase of the travel demand model. This step captures the interaction of travel demand 

and transportation supply, and performance measures are exported for further transportation policy 

evaluation. For the Greater Toronto-Hamilton Area (GTHA), the operational travel demand model 

is GTAModel, which is an activity-based and agent-based microsimulation model. GTAModel is 

connected to Emme software for the traffic and transit assignment part.  

Travel time is the most important among the various performance measures generated by the travel 

demand model. This measure and other correlated performance measures, such as vehicle 

kilometres travelled (VKT), can help to evaluate and assess various questions about mobility, 

accessibility, and congestion, as well as the economic benefits and environmental impacts of 

improvement/expansion projects. Travel time is calculated by the volume delay function (VDF) 

while assigning vehicular trips to paths between origins and destinations. Travel time, or link cost 
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in general, is commonly driven by variables such as traffic flow (the result of assignment) and link 

distance, free flow speed, capacity, and a speed-flow relationship (constant parameters of the road 

segment). The main objective of VDFs is to reproduce realistic travel time and traffic flow in the 

traffic assignment and to guarantee the assignment's convergence towards user equilibrium.  

The volume–delay function, one of the most fundamental and extensively used functions within 

traffic modelling, has experienced minimal modification since it was invented in the 1960s, despite 

significant technological advancements in transportation systems and travel modelling. When 

comparing the various types of link performance models, it is found that researchers tend to prefer 

roadway performance models that better represent vehicle queuing, such as the one that exists in 

dynamic traffic assignment. On the other hand, transportation planners are still using 

traditional and simplistic methods, such as the BPR function (Huntsinger & Rouphail, 2011), 

which is used in static traffic assignments. This gap between the widespread development by 

researchers and limited application by planners for practical purposes motivates us to prepare a 

data-driven pipeline for the clustering and calibration of roadway performance models that are 

utilized in both static and dynamic traffic assignments. The expectations of both parties will be 

met as a result of this study. 

The outputs of the travel demand models will not be helpful until the supply and demand for 

transportation are accurately calibrated and implemented within the overall modelling framework. 

For the GTHA, the calibration of the demand side of the travel demand model has been a 

significant undertaking. However, the supply side is seldom calibrated due to the scarcity of data. 

For Toronto, the last calibration occurred in 1992, when the tangent function was implemented 

and tested in the Emme traffic assignment software (Cheah et al., 1992). Before the current study, 

speed-flow relationships and parameters were presumed constant over each road functional class 

without being calibrated with actual empirical measurements. Real-world scenarios involve many 

variations in volume-delay characteristics, making it appear shortsighted to adopt a general VDF 

for the whole city without critically investigating the performance of the different road types. In 

this study, VDF calibration and clustering were done to apply them in the GTAModel-based Emme 

assignment. 

The Greater Toronto and Hamilton Area (GTHA) is well-known as one of the largest metropolitan 

areas in North America and is also the test bed of this research. According to statistics, the GTHA 
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population constituted 51.19 percent of the population in Ontario and 19.68 percent in Canada in 

2021 (Statistics Canada, 2021). In addition, the GTHA's population has grown by 4.7% between 

2016 and 2021 (Statistics Canada, 2021). The GTHA has faced several issues due to its rapid 

population development, including air pollution, housing shortages, and health care, but most 

notably, massive travel demand and traffic congestion on the region's transportation networks. 

Considerable investments have been made to upgrade transportation networks in this region. 

However, transportation plans and policies must be thoroughly scrutinized to guarantee that the 

advantages can be realized without incurring adverse consequences. One of the consequences that 

should be addressed before it gets worse is traffic congestion. According to the 2016 

Transportation Tomorrow Survey (TTS), it has been reported that 86 percent of morning trips 

surveyed were made by motorized mode in the region (Malatest, 2018). Hence, since most trips 

are made by vehicles, creating a mobile environment and supporting more sustainable travel 

patterns can ease the community's movement through an urban area and reduce traffic congestion 

and air pollution.   

GPS-enabled devices have been used extensively in recent years, generating an extensive source 

of digital footprint. These emerging data sources can be used to calibrate travel demand models, 

which can address the limitation of existing data sources. These passive location traces have great 

geographical and temporal coverage, making them an excellent tool for evaluating the performance 

of the transportation infrastructure in the study area under various operating conditions. In this 

study, the University of Toronto has the academic license for Streetlight Data, which is an online 

transportation big data analytics platform. This served as motivation for exploring the database 

and then using it for this study's objectives. 

Given the disparity between academic and operational use of transportation supply models, as well 

as the need to assess ongoing and future transportation expansion projects, this study was 

motivated to develop a simplified yet realistic transportation performance model to help the 

planners to have better insight into the transportation system performance and to develop robust 

and adaptive plans. This research focuses on a data-driven approach and presents a multi-stage 

clustering and calibration framework for constructing transportation performance models. 

Regarding the applicability and spatial transferability, this data collecting and processing pipeline 

may be applied elsewhere. 
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1.2 Objectives (Research Questions) 

This study aims to provide a theoretically solid and computationally efficient roadway 

performance measure for the GTHA to accurately capture cumulative vehicle arrival in the link 

and its propagation in the transportation system. A review and comparison of the existing highway 

performance metrics are needed to identify the gap and highlight potential limitations. Based on 

the literature review, the traditional simplistic BPR function appears to have significantly been 

used in practice in different parts of the world. Further review of the literature reveals that many 

of the existing roadway performance metrics were not even calibrated with local speed-flow data. 

This leads to the objective of this study, which is to develop a data-driven, well-behaved, simplified 

and effective volume delay function to be used in the static traffic assignment for the region. To 

achieve this objective, this study builds a practice-ready framework for the clustering, calibration 

and validation of a new form of locally derived volume delay function for different roadway 

functional classes in the GTHA. 

With the support of the newly calibrated road-type-specific performance models, this study 

explores the spatial and temporal variation of GTHA transportation infrastructural supply to 

answer the following questions: 

 What mathematical formulation best fits speed flow data points in uncongested and 

congested regimes? 

 What is the relationship between the roadway performance model and roadway physical 

attributes? 

 What is the accuracy of the existing speed-flow relationships?  

 How roadway performance varies spatially within the GTHA?  

 How long-term planned and unexpected short-term incidents are affecting roadway 

performance? 

 Which unsupervised machine learning methods (connectivity-based, centroid-based, 

hierarchical-based and density-based approaches) perform better in clustering link 

fundamental diagrams?  

 Do the existing roadway functional classes in the GTHA’s Network Coding Standard 2016 

(NCS16) have the same traffic performance (capacity, etc.)? If not, what makes them 

different? Which clusters should be recommended?  
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 Is it possible to use one model for several types of roadways? 

1.3 Thesis Structure 

This study explores emerging data sources for developing roadway performance models. The 

structure of the thesis is as follows: Chapter 2 provides a literature review of roadway performance 

measures, from the history of this concept to the existing and presently-used functions in the traffic 

assignment module, with the emphasis on data acquisition, calibration and evaluation of this 

supply measures. The study area and data preparation are described in Chapter 3, including the 

introduction of the multiple data sources used in this study. The descriptive statistics of the sample 

dataset are provided as well. To explain the structure of the calibration framework, Chapter 4 

describes the structure and specification of model calibration and verification. Chapter 5 presents 

the final results and effectiveness of the proposed method for the sampled road functional classes 

as well as generalized link performance models for the region. Conclusions and highlights of 

findings for this study are wrapped up in chapter 6, with insight on the future avenue for further 

research.  
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Chapter 2  

 Literature Review 

2.1 Traffic Assignment 

Traffic assignment models are used to predict future traffic flows and travel times for long-term 

strategic transportation planning. Traffic assignment models constitute two sub-models: route 

choice and network loading (Figure 2.1). The former sub-model uses the travel demand matrix and 

travel time as an input and calculates the path traffic volumes. The latter sub-model use path flows 

and supply constraint, road geometry and traffic operating conditions to generate travel time 

(Bliemer et al., 2017).  

 

Figure 2.1-Travel demand and infrastructure supply interaction, Source: (Bliemer et al., 2017) 

Traffic assignment models can be categorized into different groups in terms of their spatial, 

temporal and behavioural dimensions (Figure 2.2). Based on section flow capacity limit and queue 

storage limit, one can consider four levels of spatial dimension: unrestrained, capacity restrained, 

capacity constrained, and capacity and storage constrained. In terms of the temporal dimension, 

traffic assignment models can be categorized into three levels: static, semi-dynamic and dynamic. 

Regarding behavioural assumptions, one can classify the traffic assignment model into three 

groups: equilibrium, one shot and all-or-nothing (Bliemer et al., 2017).  
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Figure 2.2-Different types of traffic assignment models, Source: (Bliemer et al., 2017) 

2.2 Volume Delay Functions (VDFs) 

Volume–delay functions, as the name implies, use nonlinear mathematical expressions to connect 

two key traffic factors. The independent variable, volume, represents the degree of traffic demand, 

while the dependent variable, delay, represents the slowing of traffic speeds as demand rises. The 

term "time delay" is a little ambiguous. A temporal baseline should be established from which the 

delay is calculated. In the context of vehicular journey time, this time baseline is the free flow 

condition in the roadway. Drivers set their speed in response to the speed limit and/or their 

interactions with other vehicles. When there is no barrier in the roadway, people will pick a 

comfortable speed, known as free flow speed, either consciously or inadvertently. Once the 

vehicular demand surpasses the free flow threshold, queues start to develop in the traffic stream. 

As congestion propagates in the link, drivers will experience a delay in their time of arrival to the 

destination, which is a disutility for their trip. In traffic studies and planning, we want to recreate 

this congestion effect in the simulated virtual environment. This has been approached in a variety 

of ways. Historically, as the traffic volume was closely correlated with travel time delay, a 

simplified model based on the macroscopic behaviour of vehicles was proposed. This macroscopic 

relationship is mostly referred to as a volume delay function (VDF) in the literature. This concept 

is also known by a variety of other names: link capacity function, volume delay relationship, travel 

time performance model, link cost function, delay function, link congestion function, road 
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resistance function, travel time-flow relationship, road impedance function, travel time estimation 

model, link latency function, macroscopic cost flow function.  

Various formulations were proposed for this concept based on theoretical and/or empirical 

background (Branston, 1976). In the late 1950s, a very simplified form of linear function was 

proposed by (Irwin et al., 1961). Later, other researchers proposed some complex forms, e.g. 

exponential, logarithmic and hyperbolic, for better representation of traffic behaviour (Mosher Jr, 

1963; Overgaard, 1967; Smock, 1962). Two functions suggested in the 1960s, BPR and Davidson, 

have gained much attention and discussion since they were proposed (Bureau of Public Roads, 

1964; Davidson, 1966).  

There are two main approaches to VDF formulation: mathematical and theoretical. The former 

approach uses the mathematical structure to replicate empirical data. This model only employs 

free flow speed and capacity. In some cases, traffic signal frequency and the effects of mixed traffic 

are considered in the formulation. In the second approach, the formulations are developed based 

on queuing principles and may explicitly consider the effect of signal timing and capacity on delay. 

These models employ free flow speed, capacity and green split parameters. 

In travel demand models, VDFs serve a specific purpose. It is used as the objective function in the 

travel time minimization problem in the traffic assignment (Fukushima, 1984). The VDF is a 

mathematical model used to calculate the performance of available road infrastructure that serves 

city-wide trips. This allows macroscopic traffic models to capture congestion effects, which is 

needed for transportation supply evaluation. Throughout the modelling process, a generalized cost 

function is generated for each link, and after summing the discretized link costs, a total path cost 

between the origin and destination pairs is calculated. Then, by adjusting vehicle routing, the 

generalized path costs of competing paths are evenly balanced (Saw et al., 2015). In a simulated 

virtual environment, there are several approaches to replicate traffic behaviour. From static to 

dynamic and micro to macro, it all depends on the purpose of the study. The VDF function is an 

essential input for the standard mathematical programming formulation in static traffic assignment 

(Patriksson, 1994; Sheffi, 1985). To be more explicit, VDFs are employed in the macroscopic, 

static, deterministic, capacity-restrained, and aggregate user equilibrium traffic assignment as a 

fundamental highway performance model. VDFs are also utilized in agent-based modelling and 

semi-dynamic traffic assignment. The major goal of VDFs is to ensure that the Wardropian 
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algorithm converges to user-equilibrium, as well as to recreate realistic travel time and traffic flow 

in traffic assignment.  

In traffic flow theory, the relationship between speed, flow and density has been the subject of 

extensive research. These fundamental traffic flow metrics could be used in traffic assignment 

software with some modifications. There are two significant differences between the speed-flow 

relationship in traffic flow and the travel time-flow relationship used in traffic assignment. First, 

the speed-flow relationship is not strictly increasing and lacks one-to-one mapping (it has a 

backward-bending relationship), which makes it unsuitable for the minimization problem in the 

traffic equilibrium assignment (Jastrzebski, 2000). Hence, the volume-delay function was 

developed to fit the requirement of those algorithms. Volume-delay function and speed flow 

relationship have the same function in the uncongested part, but the congested region is where they 

diverge. Volume-delay function does not fit the curve with the speed-flow measurement points in 

the congested part. Secondly, the flow utilized in planning applications is demand flow, whereas 

the flow used in traffic flow theory is the detected/observed flow at a road segment. The detected 

and demand flows are equal prior to queue formation in the roadway. These two flows are no 

longer the same as the queue starts to develop. Traditional traffic flow measuring systems (such as 

single loop detectors) can only count served traffic, not demand traffic. The highest flow values 

recorded in the actual world have a limit, which is the highway's capacity. The flow that is 

computed in the planning applications, on the other hand, has no limit. Although there is field data 

and following that empirical approach for the uncongested regime, a theoretical approach should 

be chosen for the congested regime.  

Demand flow is a term used in queuing theory, which is also reflected in the VDF concept. The 

demand is the volume that would pass through the corridor if there were no capacity constraints. 

Traditional traffic measurement devices cannot determine the demand flow. There could be two 

methods to derive demand from processed volumes. First, the actual demand can be calculated 

from queueing theory. Secondly, the density ratio can be used to estimate the demand. The first 

method is preferred if there is appropriate data for it. If the first method is not applicable, the 

density ratio can be used for demand estimation (Kucharski & Drabicki, 2017).  
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VDFs have some drawbacks and limitations: 

1. The function is highly simplified and behaviorally unrealistic and should be used only as a 

part of the static traffic assignment (Gentile & Noekel, 2009). 

2. (Gentile et al., 2005) claimed that static traffic assignment could not replicate the actual 

traffic volume and travel time. Additionally, they pointed out that the VDF's goal is to 

ensure that the Wardropian algorithm will converge to the user equilibrium rather than to 

produce actual travel times. 

3. VDFs assume steady flow and queues, which is rarely observed in reality.  

4. Delays at intersections due to competing traffic volumes from other links are not 

considered by the link VDFs. 

5. VDFs have a vague definition of flow over capacity. In reality, the flow cannot exceed the 

capacity. 

6. Queue formation, propagation, and dissipation are not captured well.  

7. It does not consider the conceptual and measurement uncertainty in road capacity. 

8. VDFs are not spatially transferable. They do not account for the change in vertical and 

horizontal geometry. 

9. VDFs do not account for the speeds of different types of vehicles in the traffic stream. 

10. There is a scaling inconsistency between VDF parameters and variables. Parameters are 

 estimated at the area type and facility type level, whereas the speed and capacity are 

estimated at the link level. 

11. VDF parameters are not sensitive to time of day traffic conditions.  

Besides, (Horowitz, 1991) pointed out some limitations of VDFs in the travel forecasting model: 

1. Any road segment's delay results from traffic flow exclusively on that particular road 

segment. 

2. The Frank-Wolfe method employed in the equilibrium traffic assignment cannot 

consider the volume of numerous road segments for calculating the delay of one road 

segment. 

3. The delay function must follow specific criteria to be employed in the equilibrium traffic 

assignment, such as not having any discontinuities, strictly rising, and being analytically 

integratable. 

4. Many travel forecasting models permit only one functional form of VDF. 
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5. Many travel forecasting models cannot consider turn penalties as a function of turning 

volume.  

6. In traffic assignment, volumes may be generated that exceeds the capacity. As a result, 

VDFs need to be able to calculate the travel time in the situation that volume exceeds 

capacity. 

The travel time is calculated as follows: 

𝑡(𝑣) =
𝑑

𝑠(𝑣)
 

Where 𝑑 is the distance, 𝑠 is the speed, and 𝑣 is the traffic flow. Speed is a function of traffic 

volume based on the traffic flow fundamental diagram. So, travel time will be a function of traffic 

flow. Distance is unique for each road section. Hence, this formulation can be divided into static 

and dynamic parts. By multiplying free flow speed (𝑠0) to numerator and denominator, we can 

write the travel time of a road section as the multiplication of free flow travel time and a function 

of traffic volume 

𝑡(𝑣) =
𝑑

𝑠(𝑣)
= 𝑑 ∗

1

𝑠(𝑣)
=
𝑑

𝑠0
∗
𝑠0
𝑠(𝑣)

= 𝑡0 ∗ 𝑓(𝑣) 

Generally, the travel time function is usually expressed as the multiplication of free flow travel 

time 𝑡0 and normalized congestion function 𝑓(
𝑣

𝑐
): 

𝑡(𝑣) = 𝑡0 ∗ 𝑓(
𝑣

𝑐
) 

𝑣

𝑐
 is the saturation rate. The relationship between saturation rate and travel time is nonlinear. The 

rate of change of travel time versus saturation rate is dependable on the magnitude of the traffic 

flow. Before the congestion regime, travel time slowly rises, but travel time rises steeply after 

passing a congestion threshold. The steepness of the VDF curve in the congested regime is closely 

related to road design (Akçelik, 1991). In literature, researchers have set a maximum cap on the 

steepness rate of a VDF to avoid the risk of overestimation of travel time (Spiess, 1990).  

As travel time is directly correlated with the average speed of traffic flow, the VDF formulation is 

recommended to be written as the relationship between speed and flow rather than travel time and 
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flow (Nielsen & Jørgensen, 2008). A straightforward transformation can do this, and then this 

transformed formulation can be used in the calibration process: 

𝑠(𝑣) = 𝑠0 ∗ 𝑓(
𝑣

𝑐
) 

Where 𝑠0 is free flow speed and 𝑓(
𝑣

𝑐
) is normalized congestion function. 

VDFs contains link/region-specific input parameters. Capacity, free flow speed, and some 

coefficients can be seen in most VDFs. Free-flow speed and capacity are fixed-variable values that 

are defined by road functional types.  

Free flow speed (FFS): 

When no other vehicles are in the roadway, such as during early morning commutes, a driver's free 

flow speed is the speed he or she selects. There are two approaches to determining free flow speed: 

1. Velocity of vehicles in free-flow traffic (low density) or a top 5% (or 15%) percentile of 

the travel time among all observation points 

2. Velocity based on the law limit  

Capacity: 

Based on the HCM definition, capacity is the maximum potential/ability of a roadway under 

normal road and traffic conditions to accommodate vehicular traffic flow. It is difficult to 

determine the capacity of the road segment because of its nondeterministic nature. The 

considerable variation in the capacity may come from the probabilistic character of the vehicle-to-

vehicle and vehicle-to-built-environment interactions. Besides driving behaviour, environmental 

conditions (weather and vehicle composition) may influence the stochastic nature of this variable 

(Das & Chilukuri, 2020). Downstream control/restriction characteristics (traffic signal or 

geometry) influence the capacity of a road segment (Das & Chilukuri, 2020). Capacity is assumed 

to be constant in the traffic assignment problem, ignoring the fact that capacity depends on the 

composition of vehicles on the roadway (Das & Chilukuri, 2020). Capacity in HCM is determined 

by road features such as the number of lanes, speed, location, and gradient. Spiess defined capacity 

as the volume where the congested speed is half that of the free-flow speed. Other researchers 



13 

 

considered capacity as the average of the top 1% flow rate measured at the bottleneck (Huntsinger 

& Rouphail, 2011). 

There are some other methods for determining the capacity: 

1. Selected maxima method: This method states that the maximum observed flow determines 

the capacity over a period of time (Gomes & Horowitz, 2009). This method assumes that 

actual road capacity is rarely seen due to outside variables (such as driver behaviour and 

weather conditions) that lead to less-than-ideal traffic circumstances. 

2. Fundamental diagram method: This approach builds the diagram using the three 

fundamental components of traffic flow: speed, flow, and density (Rakha & Crowther, 

2002). Mathematical models will be fitted to the data to determine the maximum point at 

which the curve turns, which this point is considered to be capacity. 

3. The product limit method: This technique identified a traffic breakdown as a steep decline 

in speed, which can occur when demand exceeds supply. Based on the observed flows over 

a period of time, this approach can estimate the capacity (Kaplan & Meier, 1958).  

(Spiess, 1990) coined some rules for VDFs. VDF formulation should have these mathematical and 

behavioural conditions: 

1. 𝑓(𝑥) should be strictly and monotonically increasing. This is required for the convergence 

to a unique solution.  

2. 𝑓(0) = 1 and 𝑓(1) = 2; To ensure that the proposed VDF is compatible with BPR-type 

functions, these requirements must be met. 

3. 𝑓′(𝑥) should exist and be strictly increasing. This condition ensures the convexity of the 

VDF. 

4. 𝑓′(1) = 𝛼; which defines the magnitude of congestion effect when the capacity is reached.  

5. 𝑓′(𝑥) < 𝑀𝛼; this condition is defined to limit the steepness of the congestion curve, and 

as a result, it limits the VDF to have high values in the congested regime.  

6. 𝑓′(0) < 0; this condition guarantees unique values for link volumes.  

7. The computing time of evaluation of 𝑓(𝑥) should not be greater than the evaluation of 

corresponding BPR functions.  

Where 𝑓(𝑥) = 𝑓(
𝑣

𝑐
).  
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There are several efforts in the literature to develop suitable VDFs. BPR (Bureau of Public Roads, 

1964), Davidson (Davidson, 1966), Conical (Spiess, 1990), kcelik (Akçelik, 1991) and empirically 

modified BPR variations (Moses et al., 2013) are the most common variants of VDF.   

BPR function: 

The BPR (Bureau of Public Roads) function, developed in the late 1960s by fitting data collected 

in uncongested and uninterrupted freeways, is the most widely used VDF in literature and practice 

(Branston, 1976; Bureau of Public Roads, 1964). Even though it has several drawbacks, it is 

employed in studies with less attention to detail and low traffic demand in the network. Its 

widespread use can also be attributed to its simple formulation and minimal input parameters 

requirement (Mtoi & Moses, 2014). This common VDF is parabolic in shape, and its formulation 

is as follows: 

𝑡(𝑣) = 𝑡0 ∗ [1 + 𝛼 ∗ (
𝑣

𝑐
)𝛽] 

Where 𝑡0 free-flow travel time, 𝛼 and 𝛽 are coefficients to be estimated by field data, 𝑣 is the 

traffic volume and 
𝑣

𝑐
 is the volume-to-capacity ratio (degree of saturation). Originally, 𝛼 and 𝛽 are 

recommended to be 0.15 and 4. These two variables are unique to the environment and geometry 

of the road. Parameter 𝛼 indicates the ratio of free-flow travel time to the travel time at capacity. 

Parameter 𝛽 determines the rate of change of average travel speed from a free-flow regime to a 

congested condition (Mtoi & Moses, 2014). Higher 𝛽 values will lead to more sudden onset of 

congestion (as illustrated in Figure 2.3), whereas higher values of  α indicate much worsening 

conditions with increasing traffic flow (as shown in Figure 2.4). Furthermore, 𝛽 defines the 

curvature of the BPR function, with 𝛽 ≤ 1 indicating concavity and 𝛽 > 1 indicating convexity. 

The result of BPR might not be accurate in highly congested road segments because this function 

was developed based on traffic data of an uncongested state of a highway in its early 

implementation stage (Skabardonis & Dowling, 1997; Spiess, 1990). Hence, since proposing BPR 

function, local traffic authorities across the world calibrated the BPR curve coefficients by 

empirical and/or simulated data to suit their local needs.  
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Figure 2.3-Typical BPR function curves with different beta values 

 

Figure 2.4-Typical BPR function curves with different alpha values 
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BRP has some drawbacks. Researchers have summarized that the BPR function underestimates 

travel time in an uncongested regime and overestimates travel time in a congested regime (Akçelik, 

1991; Singh & Dowling, 1999). Also, it is noted that the BPR function overestimates traffic 

volumes while volume exceeds capacity and underestimate traffic volume for free-flow condition 

(Singh & Dowling, 1999). (Akçelik, 1991) pointed out that by adjusting the parameters of the BPR 

function, the travel time may become constant in the uncongested regime, whereas it becomes 

sensitive to volume in a congested regime. Also, it is noted that using the BPR function can lead 

to extreme values for the link travel time in early assignment iterations. In mixed traffic situations, 

where several vehicle classes occupy the road in non-lane-based movements, BPR is not suitable 

(Das & Chilukuri, 2020). Furthermore, different types of traffic facilities (e.g. traffic signals) and 

traffic operating conditions are not considered in the derivation of the BPR function (Boyce et al., 

1981; Skabardonis & Dowling, 1997). In other words, the BPR function is not inspired by queuing 

principles.  

To better capture operational traffic conditions and signalization effects, other VDF formulations 

have been suggested. Some examples of these functions include Conical, Davidson, and Akçelik. 

These alternative functions differ by the formulation, input parameters and shape of the curve. The 

most prevalent metrics in choices are free flow trip time and segment capacity, although other 

features, such as signal timing parameter, are also taken into account. 

Conical function: 

The conical VDF is another alternative to the BPR function. This function was created to address 

issues with the high value of beta parameter in the BPR function. The issue was overloading the 

link during the first few iterations of an equilibrium assignment (Spiess, 1990). Conical function's 

name is derived from its hyperbolic conical geometry, which is the intersection of two 2-

dimensional planar surfaces and a 3-dimensional cone. This function meet all seven criteria 

mentioned before for a well-behaved congestion function. This function is developed by Spiess as 

follows:  

𝑡(𝑣) = 𝑡0 ∗ [2 + √𝛼2 ∗ (1 −
𝑣

𝑐
)
2

+ 𝛽2 − 𝛼 ∗ (1 −
𝑣

𝑐
) − 𝛽] 
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𝛽 = 
2𝛼 − 1

2𝛼 − 2
 & 𝛼 > 1 

Both BPR and Conical use similar inputs. 𝛼 and 𝛽 are variables consistent with similar parameters 

in the BPR function. In contrast to the BPR function, only one coefficient is required to be 

estimated in the conical function. A typical conical function with different 𝛼 values is presented 

in Figure 2.5. The conical delay function is based on a mathematical derivation that uses basic 

geometry and elementary algebra rather than empirical data. The conical volume–delay function, 

like the BPR function, does not explicitly account for signalization effects. 

 

Figure 2.5-Typical Conical function curves 

Davidson function: 

(Davidson, 1966) brought queueing theory into play and modified the well-known steady-state 

delay equation, which is as below: 
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𝑡(𝑣) =
1

𝑐
+

𝑣
𝑐

𝑐 ∗ (1 −
𝑣
𝑐)

 

This equation consists of two parts: the first term is for service time; the second represents the 

queuing delay. Davidson multiplied 𝐽𝐷 as a delay factor to the second term. Also, Davidson 

assumed that service time (
1

𝑐
) equals to free flow speed (𝑡0). After implementing these changes to 

the original formula, the Davidson function is proposed as follows:   

𝑡(𝑣) = 𝑡0 ∗
1 + 𝐽𝐷 ∗

𝑣
𝑐

1 −
𝑣
𝑐

 

Where 𝐽𝐷 is the delay parameter (1 − 𝐽𝐷 can represent the quality of service). For Davidson's 

function, (Taylor, 1977) provided a technique for estimating the parameters and explored the 

sensitivity and reliability of his method. Compared to the BPR function, there is some 

inconsistency in Davidson's function (Golding, 1977). For instance, capacity is defined as the 

inverse of free flow travel time and saturation as volume times free-flow travel time. To cover 

these inconsistencies, Davidson modified the function and redefined the delay parameter 

(Davidson, 1978). This modification resulted in another inconsistency: better service quality with 

increased free-flow travel time (Akçelik, 1991). Besides this, there was one problem with 

Davidson's delay model: it could not define the travel time when volume exceeds capacity 

(generating negative travel times). It estimates an infinite travel time when flow equals capacity. 

Hence, Davidson's delay model was further modified to cover this flaw (Akçelik, 1981). (Taylor, 

1984) proposed a network equilibrium assignment that used a modified Davidson's function. 

(Tisato, 1991) reported that when the delay parameter in the modified Davidson's function gets 

closer to its limit of one, the slope of the linear extension behaved poorly.  

Akçelik function: 

On top of the Davidson VDF, Akcelik proposed a time-dependent form of Davidson formulation 

to encompass the intersection delay (Akçelik, 1991). Akcelik used coordinate transformation to 

address the issues of inconsistent parameter definition and overestimation of travel time around 
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the capacity flow caused by Taylor's modification of Davidson's function (Akçelik, 1991). Here is 

the formulation: 

𝑡(𝑣) = 𝑡0 + 0.25 ∗ 𝑇𝑓 ∗ (
𝑣

𝑐
− 1 + √(

𝑣

𝑐
− 1)2 +

8 ∗ 𝐽𝐴 ∗
𝑣
𝑐

𝑐 ∗ 𝑇𝑓
) 

Where 𝑇𝑓 is flow period value that shows the period of flow analysis, 𝐽𝐴 is a delay parameter that 

can be estimated by nonlinear regression. Akcelik provides a formula to have a rough estimation 

of the delay parameter (𝐽𝐴):  

𝐽𝐴 =
2𝑐

𝑇𝑓
(𝑡𝐶 − 𝑡0)

2 

Where 𝑡𝐶 is the value of travel time at capacity. The rest of the variables have been defined before. 

Akcelik function can be used for individual road segments and road segments ending at a 

signalized intersection. To account for the delay in the intersection, 𝑇𝑓 has lower values for 

freeways/coordinated signal roadway and higher values for arterial roads without signal 

coordination. During the analysis period, it is assumed that the average arrival demand flow rate 

remains constant and that there is no beginning queue. The Akcelik function has better 

convergence in the assignment algorithm and generates a more realistic speed in a congested 

regime. The Akcelik function can handle both free flow and congested regimes by using the 

Webster formulation for the undersaturated regime and an oversaturated model for the congested 

regime. Figure 2.6 represents a typical conical function with different parameters.  
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Figure 2.6-Typical Akçelik function curves 

Comparison of VDF models: 

VDFs can be compared from multiple perspectives, including shape, steepness, predicted speed 

and underlying theoretical concepts (Saric et al., 2019). Most discussions are on the reliability of 

these models in the congested regime. The curvature of the VDF curve in congested conditions 

and the steepness of this curve near the congestion threshold are the two factors that need further 

examination. According to the traffic flow fundamental diagram, the relationship between volume 

and speed must be convex. Although VDFs cannot depict the bottom half (congested part) of a 

volume-speed diagram, some VDFs do reflect the convexity of the fundamental diagram's 

uncongested part. With default parameters and calibrated values, the BPR and conical functions 

are defined to be convex. They can, however, have a concave form even if the default values are 

not used (𝛽 ≤ 1 in case of BPR function). Because there is not enough data to calibrate the 

congested part, the form of VDF when the flow exceeds capacity mostly depends on the modeller's 

intuition. Another comparative criterion is the steepness of the VDF around the congestion 

threshold. In certain models, e.g. Akcelik and Conical, a significant decline in speed can be seen 
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at v/c = 1, whereas others show a minor speed change at this point. According to Spiess' 

comparison of the BPR and Conical functions, Conical is preferable to BPR in every perspective, 

including computation time, convergence, and flexibility (Spiess, 1990). Field investigation should 

be done to see how reliable the existing VDFs are.  

2.3 Factors Influencing VDFs 

VDFs capture the effect of congestion. According to studies, there are additional factors impacting 

travel time in addition to the number of vehicles traversing the roadway. According to the Federal 

Highway Administration (FHWA), six sources of congestion are: bottlenecks, poor signal timing, 

special events, construction zones, severe weather, and traffic accidents. In addition to these 

congestion sources, physical and operational characteristics of the road environment and road 

users, such as vehicle composition, road layout, geometry, and land use, may affect the journey 

time. Some factors influencing the volume-delay relationship for a roadway are discussed below.  

Vehicle type: 

Generally, VDFs are developed for a relatively single-mode homogenous traffic environment, in 

which vehicles are mainly motorized (F. Zhao et al., 2020). However, traffic flow in a single road 

segment may be heterogeneous, and its composition may vary spatially and temporally. Vehicles 

differ in type, size, engine power, maneuverability, etc. Different vehicle classes can traverse the 

roadway, including but not limited to motorized two-wheelers, three-wheelers, four-wheelers, 

bicycles, light commercial vehicles, and heavy commercial vehicles. This difference in physical 

and operational characteristics of vehicles may result in various inter- and intra-vehicular 

interactions and non-lane-based movement. This behaviour may result in a wide range of observed 

speed in the roadway, in which heavy vehicles contribute to the lower range and fast-moving 

vehicles constitute the higher range. Additionally, compared to an auto, an oversized vehicle, e.g. 

truck, occupies much more of the road's capacity. Furthermore, due to safety issues, auto drivers 

may keep a greater distance from a truck than an auto (Yun et al., 2005). Last but not least, 

compared to the condition where all road users are automobiles, trucks have considerably longer 

acceleration and deceleration times, which causes far greater deterioration of congested speed 

(Moridpour et al., 2015; Yun et al., 2005). In order to take into account all of these issues on 

roadway capacity and speed, (the Highway Capacity Manual, 2000) recommends using a 

passenger-car-unit (PCU) approach for heavy trucks. Other researchers have proposed modified 
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functions developed based on real traffic data, theory, and/or microsimulations (Lu et al., 2016; 

Moridpour et al., 2015; Müller & Schiller, 2015). (Das & Chilukuri, 2020) proposed a link cost 

function for mixed traffic condition, developed based on the kinematic wave model. They 

validated the function with the 12 signal cycles from two different signalized intersections. (Yun 

et al., 2005) developed updated volume delay relationship based on microsimulation results that 

accounts for the mix of heavy truck traffic. (Šarić & Lovrić, 2021) proposed a function that 

considers traffic flow heterogeneity and road geometry characteristics. They pointed out that the 

combined effect of traffic composition and geometric features (longitudinal grade and curvature) 

significantly impact the roadway's average speed. (Thomas et al., 2012) constructed a multi-regime 

and class-wise speed—flow relationship for a mixed traffic environment, which captures 

asymmetric and unequal interactions between different pairs of vehicle classes.  

Weather: 

Weather conditions may have a significant impact on the operation of traffic systems. (Maze et al., 

2006) identified three categories that can be affected by weather conditions: traffic safety, traffic 

flow relationship and traffic demand. Inclement weather can affect drivers' perceptions in a variety 

of ways. Road users may reduce their speed due to reduced visibility and pavement friction. On a 

microscopic level, it is well understood that higher precipitation lengthens trip times due to 

increased danger (Mashros et al., 2014). (Maze et al., 2006) studied the freeway system and pointed 

out that adverse weather causes a significant reduction in traffic speed: up to 6% for rain, 13% for 

snow, and 12% for low visibility. (Ibrahim & Hall, 1994) analyzed the effects of rain and snow on 

the speed-flow-occupancy relationship on Canadian roads and found that snow has much more 

effect than rain and can cause up to 50 km/h reduction in free-flow speed. (Li et al., 2021) studied 

the effects of weather conditions (rain intensity and visibility) on travel-time prediction models 

using soft set theory. (L. Zhao & I-Jy Chien, 2012) studied the impact of adverse weather condition 

on traffic speed and travel time reliability and found that under adverse weather, traffic speed 

dropped, and traffic congestion began to form. (Caceres et al., 2016) considered the impact of 

various factors, e.g. weather, time of day, accidents, on travel time.  
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Road incidents: 

Road network disruptions, such as roadworks and traffic crashes, can cause a road link's capacity 

to be reduced or even eliminated, leading to longer travel times. 

Road layout, geometry and land use: 

Vehicle interactions may become more complicated due to different road layouts, geometry and 

land use. For instance, the road's horizontal alignment and longitudinal grade and pavement 

condition might affect vehicle speed. Another element influencing vehicle speed is land use near 

the road segment (e.g. drivers tend to slow down their speed while passing by schools or leisure 

centers). The presence of on-road parking and bus lay-bys on the roadway may have an impact on 

its performance. 

2.4 History of VDFs Used for Toronto 

For the Emme assignment used in GTHA, an ad-hoc modification to the BPR function known as 

the tangent function was developed. This function acts exactly like the BPR function up until the 

volume equals the capacity. When the volume exceeds the capacity, it extrapolates the BPR 

function using a linear delay function with the BPR function's slope in the v=c. Because of its 

same performance in predicting base case travel time and traffic volumes as BPR, its faster 

convergence than BPR, and its theoretical backbone (simplified deterministic queuing theory for 

the oversaturated region), they chose the tangent function instead of BPR for the region. 

𝑡 =

{
 
 

 
 𝑡0 ∗ (1 + 𝛼 (

𝑣

𝑐
)
𝛽

)                                        𝑖𝑓 
𝑣

𝑐
< 1

𝑡0 ∗ ((1 + 𝛼 − 𝛼𝛽) + 𝛼𝛽 ∗
𝑣

𝑐
)                 𝑖𝑓 

𝑣

𝑐
> 1

 

Where 𝛼 is normally 1 for one-hour assignments. 𝛽 is 4 and 6 for arterial roads and freeways, 

respectively.  

The findings of a comparison study on six variants of VDF for the Emme assignment used in 

Toronto revealed that the VDF functions are ranked as follows, from greatest to least CPU time 

savings: horizontal half-tangent, asymptotic, tangent, conical, and BPR (Cheah et al., 1992). 



24 

 

 

The VDF concept and functional classes in NCS161 are derived from various sources, including 

NCS11, the Geometric Design Guide, and GGHMv42. The NCS11 and/or GGHMv4 standards 

were used for lane capacity because the capacity value was not included in the Geometric Design 

Guide. The tangent function is employed as the VDF in the current GTAmodel. In the uncongested 

regime, this function is BPR. However, when the volume exceeds the capacity, it becomes an 

inclined line with a slope of the BPR curve in the v/c equals 1. GTAmodel applies the posted speed 

limit as the free flow speed in the tangent function. One exception is freeways, where the posted 

speed plus 10 km/hr is used in modelling. In the following table, nominal link capacity is shown.  

NCS22 was still undergoing final edits at the time of this thesis. Therefore, the analysis of this 

study relied on the final version of NCS16. 

2.5 VDFs and Emerging Technologies  

Static traffic assignment is employed in the strategic modelling of new mobility alternatives. 

Therefore, VDFs may need to be updated to consider these new transportation technologies. To be 

more precise, connected and autonomous vehicles are one of those significant changes that may 

alter how we define the capacity of current motorways. The capacity and throughput will both rise 

with the penetration rate of these vehicles. Researchers compared the microsimulation dataset with 

the results of the BPR function and concluded that in some circumstances, the BPR parameters 

should be modified based on the different CAV penetration rates (Qiu et al., 2022).  

2.6 Data Sources Required for Calibration 

An extensive set of data from single or multiple sources are used in VDF calibration (Hansen & 

Bertini, 2005; Raw & Munn, 2009; Z. Wang & Liu, 2005). The main inputs for calibration are 

traffic speed and volume. There are several methods to measure travel time and traffic flow from 

                                                 

1
 The 2016 Network Coding Standard (2016) was developed by the University of Toronto Travel Modelling Group 

for use by member agencies in the GTHA. See TMG (2017). 

2
 The Greater Golden Horsehoe Model, Version 4, developed by the Ontario Ministry of Transportation. 
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a traffic stream. Loop detectors, radar, and video surveillance systems are the common traffic 

measuring devices, most of which are found on limited-access highways. On the other hand, 

collector and urban arterial roads have fewer traffic measurement equipment. Other than these in-

place instruments, data collected via location-based and crowd-sourced mobile sources can be 

utilized to support the VDF calibration procedure. If no observed data is 

available, microsimulations could be utilized to replicate the actual traffic situation and generate 

synthetic data for VDF curve fitting (Dowling & Skabardonis, 1993; Skabardonis & Dowling, 

1997). 

A traffic counter is a common way to measure traffic flow and volume. On the road, these counters 

are either permanently or temporarily installed. One of the difficulties is obtaining travel time data 

in addition to traffic volume from these devices. Single loop detectors are unable to provide any 

information about speed. Instead of point measurement, one method is to place two loop detectors 

close together to detect the highway's instantaneous speed, which still does not represent the delay 

vehicles encounter on the whole road segment but can give an approximate estimate of the link's 

travel time. Other data sources can be used and fused with the traffic count data in addition to this 

method. For instance, the traditional license plate-matching method can also be used to find the 

average travel time by the matched vehicles (Xiong & Davis, 2009). In addition, a GPS logger 

mounted on a probe vehicle can provide us with the speed profile of a road segment, which can 

give us an estimate of the travel time. These data sources are well enough for highways, but signal-

related inputs are also needed for road segments that end at intersections to obtain a reliable travel 

time estimate. 

Data resolution in terms of time and space is also critical. Most scenarios in travel demand models 

are built for the morning rush hour. Aggregating speed-flow with a 1-hour interval or finer 

resolution can aid in the creation of an appropriate volume-delay function. Traffic data from a wide 

range of roadway functional classes with great geographical coverage can also help in the 

development of context-specific VDFs by the area and functionality type.  

2.7 Data Cleaning 

The calibrated traffic parameters of a road segment may be misrepresented as a result of anomalies 

and outliers. Because of this, these atypical data points need to be cleaned before the dataset is 
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imported into the calibration step. There are various statistical and machine learning techniques to 

detect and eliminate the anomalies, some of which need single loop detector data, while others 

require data from a series of loop detectors.  

For a single loop detector, comparing speed, flow and occupancy data points of one time intervals 

to those of its preceding and subsequent time intervals can help to detect traffic breakdowns. Short 

observation durations of 1 or 5 minutes are reasonable to notice a breakdown between intervals. A 

breakdown is a traffic state which occurs when a stable traffic condition becomes unstable. There 

are multiple ways to determine the breakdown from speed-flow time series data. To begin, the 

breakdown might be detected using a minimum speed difference. Second, a minimum traffic flow 

should be specified to avoid the detection of false nighttime breakdowns. The literature 

recommends a speed difference of 10 km/h and a minimum traffic flow of 600 vehicles/lane/hour 

(Neuhold & Fellendorf, 2014). Other researchers have compared all data points with one another 

on a speed-density or density-flow plane and identified irregularities. (Dudek et al., 1974) 

proposed an approach, named as the standard normal deviate (SND) method, which uses mean 

value (μ) and some measure of variation (σ) to detect if a data point is below some threshold value 

of μ-cσ. (Kalair & Connaughton, 2021) used similar approach with kernel density estimation to 

construct a bivariate distribution of density-flow and determined that outside the 95% of the 

probability curve is strongly correlated to significant congestion events. (Casey et al., 2020) 

applied a manually tuned DBSCAN method to eliminate outlier points from low-density areas in 

the speed-density plot. (Yuan et al., 2018) used the convolutional-LSTM model to forecast the 

time and location of traffic accidents. Other researchers utilized a convolutional neural network 

for anomaly detection (Zhu et al., 2018, 2019).  

For a series of loop detectors, California algorithms and variants are used, which employ basic 

pattern matching and comparing occupancy values to indicate the congestion event window (Levin 

& Krause, 1978; Payne et al., 1976). A similar approach is the McMaster algorithm, which section 

the occupancy-flow diagram into uncongested, bottleneck flow and congested regimes and use 

particular thresholds to find the traffic breakdown between one station and its upstream and 

downstream stations (Persaud & Hall, 1989).   
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2.8 VDF Calibration Method 

Calibration is the process of obtaining a mathematical expression from real-world data. Three 

criteria should be noted in calibrating roadway performance metrics: nonlinearity, 

heteroskedasticity, and site-specificity. Nonlinearity, in particular, means that the rate of change 

of travel time delay varies with the level of traffic flow. The term heteroskedasticity refers to the 

variation of the variance of the independent variable, which is the speed in the context of VDF 

calibration. With an increase in traffic volume, more variation in vehicles' speed is captured due 

to the stochastic nature of vehicular interactions. In order to account for site-specificity, the speed-

flow data should be calibrated for a sample of road segments that includes all road functional 

classes with a variety of physical attributes in the region of study. 

VDF calibration is done in two parts. The proper and well-behaved formulation should be chosen 

first, followed by the statistical estimation (regression analysis) for calibrating the function's 

parameters. In common practice, implementing one of the existing functions and adjusting the 

default parameters based on national standard guidelines appear to be typical, with little to no 

attention paid to the resulting speed outputs. However, in limited advanced practices, field data is 

used to develop, adjust and verify unique VDF.  

The main challenge for the calibration of VDFs is the measurement of demand in a congested 

regime. For the uncongested part of a VDF (v/c <1), we can evaluate and calibrate the speed-flow 

relationships by empirical observations. However, as conventional traffic count data is not 

adequate for the calibration of the congested part (v/c > 1), a theoretical approach, e.g. arbitrary 

formulation, should be taken under consideration (Jastrzebski, 2000). To be more precise, 

bottleneck analysis and queue length estimation can be used to estimate demand beyond capacity 

for calibration of the congested part of VDFs (Huntsinger & Rouphail, 2011). In roads ending at 

the signalized intersection, demand can be measured from the queue length and discharging flow 

at the stop line. However, in roads without signalized intersections, e.g. highways, a recurring 

bottleneck can be found, and demand can be measured on those spatial constraints. It should be 

noted that different queue scenarios will contribute to different shapes and slopes of VDF in 

congested part. 

Formulation-specific coefficients and road characteristics are the two sets of parameters that can 

be estimated in the calibration stage. VDF calibration can be done using a variety of optimization 
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techniques. The least-square approach is traditionally used to calibrate the travel time-flow data 

points. This approach minimizes the sum of square errors, and coefficients are estimated. The 

weighted least squares approach is one step ahead and can accommodate the variation in the 

variance of the speed values. One researcher proposed a genetic algorithm method for VDF 

parameter calibration (Cetin et al., 2012).  Regarding the input variables in the minimization, a 

partial or complete set of coefficients can be imported in the calibration step. Calibration can also 

be done with a base model with default coefficients. There is also the option of not calibrating the 

model and instead relying on traditional lookup tables for coefficients and parameters. In the 

optimization problem, in order to force the volume-delay curve to be convex, some constraint 

needs to be imposed in the calibration stage. 

As mentioned, the main challenge in link travel time estimation models is mapping speed-flow 

data from the observable congested regime (B) to the unobservable congested regime (C), 

illustrated in Figure 2.7. There are five major representations of volume-to-capacity ratios in the 

VDF estimation. In the formulations below, 
𝑣

𝑐
 is represented as 𝑦. 

 

Figure 2.7-Three regimes in speed vs. v/c ratio coordinate plane, Source: (Wu et al., 2020) 

1. Volume-based method (VBM): 

The VBM is taken from the Florida Standard Urban Transportation Modeling Structure 

(FSUTMS) (Moses et al., 2013). In the congestion regime, this method mirrors the speed-flow data 

point by v/c=1 line.  
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𝑦 =  {

𝑞

𝑐
, 𝑖𝑓 𝑡 𝜖 𝑢𝑛𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝑐 + (𝑐 − 𝑞)

𝑐
, 𝑖𝑓 𝑡 𝜖 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

 

2. Density-based method (DBM): 

In DBM, the travel time-flow calibration of VDF turns into travel time-density estimation. This 

has been done because the speed-density relationship is monotonic in congested cases, which 

resembles the same form as the delay-volume curve. (Kucharski & Drabicki, 2017) used the 

hydrodynamic relation of the fundamental diagram to calculate quasi-density from time-mean 

speeds and flows. Hence the transformation of volume over the capacity ratio to the quasi-density 

ratio will be as follows: 

𝑦 =
𝑘

𝑘(𝑞𝑚𝑎𝑥)
=

𝑞
𝑠

𝑘(𝑞𝑚𝑎𝑥 )
 

Where 𝑘 is quasi-density, 𝑘(𝑞𝑚𝑎𝑥) is density-at-capacity, in which these two parameters are the 

substitution for flow and capacity at any time, respectively. In addition, 𝑞 is observed traffic flow, 

and 𝑠 is observed traffic speed. In order to find 𝑘(𝑞𝑚𝑎𝑥 ) from the observed speed-flow data, the 

author recommended considering capacity as the 95th percentile of 15-minute flow and calculating 

the corresponding density. Also, there is an option to consider 𝑘(𝑞𝑚𝑎𝑥 ) as a variable to be estimated 

in the optimization problem.   

3. Queue demand-based method (QBM) 

(Wu et al., 2020) proposed peak-period-based calibrating framework based on the freeway 

bottleneck modelling perspective.  

𝑦 =  {

𝐷ℎ
𝑐
, 𝑖𝑓 𝑢′𝑚𝑖𝑛 > 𝑢𝑐  

𝐷

𝑐
, 𝑖𝑓 𝑢′𝑚𝑖𝑛 ≤ 𝑢𝑐  
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Where 𝐷ℎ is the volume within the peak hour, 𝐷 is the volume within the congested period, 𝑐 is 

the ultimate capacity, 𝑢′𝑚𝑖𝑛 is highest speed within the peak hour, and 𝑢𝑐 is the cut-off speed. 

Figure 2.8 illustrate different periods proposed in this method.   

 

Figure 2.8-Illustration of peak hour, congestion periods and peak period, Source: (Wu et al., 2020) 

4. Time-dependent queue-based D/c model (TDQDC) 

(Huntsinger & Rouphail, 2011) proposed a time-dependent queue-based D/c model (TDQDC) to 

estimate the demand beyond capacity as follows: 

𝑦 =  {

𝑞

𝑐
, 𝑖𝑓 𝑡 𝜖 𝑢𝑛𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

𝐷(𝑡)

𝑐
, 𝑖𝑓 𝑡 𝜖 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

 

𝐷(𝑡) = 𝑐 + 𝑞𝑢𝑒𝑢𝑒(𝑡) 

Where 𝐷(𝑡) is an average measure of queued demand and capacity at time 𝑡, 𝑐 is the ultimate 

capacity and 𝑞𝑢𝑒𝑢𝑒(𝑡) is the queue at time 𝑡. 𝑞𝑢𝑒𝑢𝑒(𝑡) is equal to the density at time interval 𝑡 

for a detector multiplied by the influence area of the detector.  

5. Time-dependent cumulative demand flow-based travel time method (TDCD) 

TDCD method is a rolling horizon model which generates one sample point for each interval. Its 

formulation is as follows: 
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𝑦 =  {

𝑞

𝑐
, 𝑖𝑓 𝑡 𝜖 𝑢𝑛𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝐷(𝜏)

𝜇(𝜏)
, 𝑖𝑓 𝜏 𝜖 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

 

Where 𝑞 is flow rate, 𝑐 is capacity, 𝐷(𝜏) is the cumulative demand during time interval 𝜏, and 

𝜇(𝜏) is the discharge rate during time interval 𝜏. This author analyzed the correlation between flow 

of bottleneck, its upstream and downstream to generate accurate discharge rates for different traffic 

conditions.  

2.9 Inaccuracies in VDF Calibration 

There are four reasons for inaccuracies in traffic flow parameters calibration: sample selection 

bias, functional form of the model, the variance of observed data, and singular value estimation.  

Unbalanced data points may result in an inaccurate calibrated function. Sample selection bias is 

the term that is used for this error. It is expected that most data points will have low flows and near 

free-flow speeds outside the peak hour. Hence, data points in an uncongested regime have more 

contribution to the final calibrated curve, which will result in misestimating the congested regime. 

There are two strategies in the literature to overcome this issue. First, a low volume data sampling 

approach may be utilized. The two methods that may be applied in this strategy are interval-based 

sampling and threshold-based sampling. In interval-based sampling, the axis of the dependent 

variable is divided into equal bins, and in each bin, an equal number of the sample will be randomly 

chosen (Zhang et al., 2018). In threshold-based sampling, the axis of the dependent variable is 

divided into two parts based on a threshold line, and an equal number of samples will be selected 

in each part. The second option is the weighting strategy. Weights are established using the weight 

determination method. The observations are ranked based on the dependent variable and are 

weighted based on their own value and their preceding and following observations (Qu et al., 

2015). 

In order to minimize the inaccuracy due to the functional form of the traffic flow relationship, all 

possible mathematical forms should be tested on the data, and the best one with the acceptable 

goodness of fit should be chosen. 
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As mentioned before, most data sources may report the average speed for each observation 

interval. Limited data sources may report each vehicle's speed or the variance of observed speed 

in each time interval. The speed variance can be imported as the weights in the weighted least 

square method (WLSM). In this way, the heteroskedasticity of speed is considered in the 

calibration procedure. The objective function is as follows: 

min𝑍 =  ∑𝑤𝑖̅̅ ̅(𝑣𝑖 − 𝑣(𝑘𝑖, 𝑚))
2

𝑃

𝑖=1

 

Where 𝑣𝑖 and 𝑣(𝑘𝑖, 𝑚) are observed and estimated speeds corresponding to density 𝑘𝑖, and 𝑤𝑖 is 

the weights based on the inverse of the variance of speed for each observed data.   

In the literature, most traffic flow parameter calibration is done only based on one dependent and 

one independent variable. If we assume that the noise of the observations is independent of the 

traffic flow and speed, we can use speed-flow-density joint estimation to calibrate the parameters 

(Cheng et al., 2021). The objective of the joint estimation is the minimization of the sum of square 

errors in both speed-density and flow-density relationships as follows: 

min𝑍 =  ∑[(𝑣𝑖 − 𝑣(𝑘𝑖, 𝑚))
2
+ 𝛿 ∗ (𝑞𝑖 − �̂�(𝑘𝑖, 𝑚))

2
]

𝑃

𝑖=1

 

𝛿 =
𝜎𝑣
2

𝜎𝑞2
 

Where 𝑣𝑖 and 𝑣(𝑘𝑖, 𝑚) are observed and estimated speeds corresponding to density 𝑘𝑖, 𝑞𝑖 and 

�̂�(𝑘𝑖, 𝑚) are observed, and estimated flows corresponding to density 𝑘𝑖, 𝜎𝑣
2 and 𝜎𝑞

2 are the 

variances in the speed and flow measurements, respectively. 𝜎𝑣
2 and 𝜎𝑞

2 can be calculated based on 

the observed data, or they can be estimated in the optimization problem as additional parameters.  

2.10 Stochasticity and Uncertainty 

Transport models are subjected to uncertainty since they describe complex systems. This 

uncertainty has the potential to affect all model components, as well as the model outputs. There 

might be two sources of uncertainty. On the one hand, the uncertainty might emerge from the 

quality of the traffic data or the model structure itself, known as epistemic uncertainty. On the 
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other hand, the variability and randomness of traffic behaviour might cause another type of 

uncertainty in output parameters known as aleatory/ontological uncertainty. By having more 

accurate data or employing alternative models, the former uncertainty can be reduced. The latter 

uncertainty can be addressed by statistical analysis, which considers stochastic behaviour. Driver 

behaviour as an internal factor, time of the day, weather condition, and link characteristics as 

external factors can lead to stochastic behaviour of the true parameters of VDF. In order to quantify 

the ontological uncertainty, model results should be given as a distribution rather than a single-

point estimate (Manzo, 2013).  

Within traffic assignment models, free flow speed and capacity are the two link-specific 

parameters that are present in VDFs. These parameters can be expressed as the point value or 

distribution of values. These coefficients are estimated from observable data or derived using 

guidelines. Free flow speed can be measured directly, while capacity is more difficult to calculate 

because of its dynamic nature. (Neuhold & Fellendorf, 2014) considered that the probability of 

traffic breakdowns determines the stochastic distribution of capacity. In the literature, a Weibull 

distribution is considered to be a good representation of stochastic behaviour of road capacity 

(Brilon et al., 2005). Weibull probability density and distribution functions are as follows: 

𝑓(𝑥) =  
𝑎

𝑏𝑎
∗ 𝑥𝑎−1 ∗ 𝑒−(

𝑥
𝑏
)𝑎

 

𝐹(𝑥) = 1 − 𝑒−(
𝑥
𝑏
)𝑎

 

Where 𝑎 and 𝑏 are the form and scale parameters. Maximum likelihood estimation should be used 

to determine the parameters. Large sample size is required to estimate the distribution of capacity, 

which might be a disadvantage of this approach (Brilon et al., 2005). 

2.11 Existing Application of Machine-Learning Methods  

There are multiple studies that used unsupervised machine learning methods to cluster traffic 

conditions. For instance, (Azimi & Zhang, 2010) applied three pattern recognition methods (K-

means, fuzzy C-means, and CLARA (clustering large applications)) to speed-flow data and 

compared the resulting classes with the Highway Capacity Manual level of service criteria. The 

K-mean clustering algorithm turned out to perform better and appears to be consistent with HCM-

defined LOS. (Yang & Qiao, 1998) employed a neural-network pattern recognition method for 
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clustering traffic flow condition with the application in Chinese highway traffic. (Sun & Zhou, 

2005) proposed a K-mean algorithm for clustering speed-density data points to two or three 

clusters, which helps to determine the breakpoints in multi-regime traffic models. (Xia & Chen, 

2007a) developed an agglomerative clustering method and used Bayesian Information Criterion 

(BIC) and dispersion measurement techniques to define an optimum number of clusters for the 

freeway operating condition. (Xia & Chen, 2007b) applied a data clustering method on the freeway 

speed-density data and pointed out that density had a more significant effect on clustering results 

compared to speed. (Kianfar & Edara, 2013) investigated three types of clustering algorithms to 

partition traffic flow data to congested and free flow regimes. They concluded that K-means and 

hierarchical clustering outperform general mixture model (GMM) clustering. (Xia et al., 2012) 

suggested a clustering approach for online identification of traffic state. They used modified 

agglomerative clustering, which stores statistical features of data instead of storing all the historical 

traffic data. (Gu et al., 2018) proposed a big data-driven two-stage framework for clustering link 

fundamental diagrams and road functional classes. They tested multiple connectivity-based and 

centroid-based approaches for clustering and concluded that the connectivity-based approach 

performs better. (D. Wang et al., 2020) performed mixture model-based clustering to calibrate 

fundamental diagram for the application in network level simulation. They pointed out that 

heuristic clustering techniques like K-means and hierarchical clustering may not work properly 

when used on data that contain overlaps across clusters.  
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Chapter 3  

 Study Area and Dataset 

3.1 Study Area 

The Greater Toronto and Hamilton Area (GTHA), Canada's most populous urban region, is the 

subject of this research. The GTHA is made up of six municipalities: regional municipalities of 

Durham, Halton, Peel, and York, as well as the Cities of Toronto and Hamilton (Figure 3.1). In 

2021, the GTHA's overall population was 51.19 percent of Ontario's and 19.68 percent of Canada's 

total population. The GTHA is not only a dense area with an average population density of 883.49 

persons/km2, but it also has a rapid population growth of about 4.7 percent between 2016 and 2021 

(Statistics Canada, 2021). More statistics regarding population are shown in Table 3.1. 

 

Figure 3.1-GTHA Municipalities, Source: (Government of Canada, 2022) 
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Table 3.1-Population of the Greater Toronto and Hamilton Area (GTHA) 

 

When it comes to the GTHA's transportation networks, there are a number of expressways that 

link the regions, including Highways 400 and 404 in the north-south direction and Highway 401, 

the tolled Highway 407, the Queen Elizabeth Way (QEW), and the Gardiner Expressway in the 

west-east direction. The GTHA network has 27951 kilometres of roadway, of which 2824 

kilometres are highways that serve a large proportion of mobility needs of the region. Figure 3.2 

illustrates the GTHA road network, which is used in the GTAModel. 

 

Figure 3.2-GTHA road network, Source: (UofT Travel Modelling Group (TMG), 2017) 

 

 

Population, 2021 Population, 2016
Population percentage change, 

2016 to 2021
Total private dwellings

Private dwellings occupied by 

usual residents

Population density per square 

kilometre

Land area in square 

kilometres

Toronto, City 2,794,356 2,731,571 2.3 1,253,238 1,160,892 4,427.80 631.1

Hamilton, City 569,353 536,917 6 233,564 222,807 509.1 1,118.31

York, Regional municipality 1,173,334 1,109,909 5.7 405,863 391,034 667.3 1,758.27

Peel, Regional municipality 1,451,022 1,381,739 5 467,970 450,746 1,163.20 1,247.45

Halton, Regional municipality 596,637 548,435 8.8 214,322 208,601 617.8 965.71

Durham, Regional municipality 696,992 645,862 7.9 250,559 243,048 276.5 2,521.11

Total 7,281,694 6,954,433 4.706 2,825,516 2,677,128 883.492 8,242
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3.2 Data Sources 

The primary data source used in this study is the speed-flow data exported from the StreetLight 

Data platform. Besides, GTAmodel V4.0 travel demand model output and DMTI Land-use data 

are also used in the study.  

3.2.1 StreetLight Data 

As a result of recent breakthroughs in information and communication technology, the use of real-

time crowd-sourced data feeds in transportation modelling has increased. These novel data sources 

have wider spatial coverage compared to conventional traffic data sources. In this research project, 

UTTRI has the academic license of StreetLight Data, which is an on-demand mobility analytics 

platform. This location intelligence company process anonymized location-based services (LBS) 

data collected by smartphones and navigation devices to produce various transportation measures. 

In this study, Streetlight was used to provide 15-minute vehicular traffic counts and average speed. 

Having data for one year from 791 road segments in the GTHA can give us an excellent grasp of 

the temporal variations and trends exhibited in the region's road infrastructure. 

In terms of data acquisition, the user may use the Streetlight platform to specify a road segment as 

an input, and transportation metrics can be generated for that section. To match the streetlight 

results to the GTAModel network, road segments in the streetlight platform are manually drawn 

and labelled the same as GTAModel. Users can select the mode of travel from these four options: 

all vehicles, truck, bicycle, and pedestrian. As Streetlight aggregate the data on a daily basis for 

the selected period of time, the data is exported for each week from this platform. The data includes 

information on the day of the week and time of day. However, there is no date index in the data. 

To get date information, the required data was extracted per week, and the file name was labelled 

with the week's start and end dates. The dataset also includes trucks’ relative trip activity (by 

weight class) and speed/travel time distribution, but this feature is not available for all segments 

or times of the day. Depending on the road functional classifications, data quality and availability 

may vary. The reason for this might be that on some roadways, just a few or no cars traversing a 

section of the road may be been recorded. 

GTAModel network contains information about the number of lanes. However, this information 

is not consistent with reality, especially for those sections that contain additional lanes for the 
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on/off-ramp. Therefore, this information is updated by checking the satellite view of the road 

segment on Google Maps. In the case that the road segment has a varying number of lanes, the 

larger section is considered as the number of lanes.  

A sample of the data exported from StreetLight Data's platform is provided in Table 3.2: 

Table 3.2-Sample dataset exported from StreetLight Data 

 

A thorough overview of the data fields in Table 3.2 is provided below: 

Vehicle Type: Mode of transportation (personal, truck, pedestrian, bicycle)  

Zone Name: A specific link I.D., encoded by Travel Modeling Group (TMG) at the University of 

Toronto, that can be connected to GTAmodel's road network  

Zone is Pass-Through: This means that the road segment drawn in the StreetLight platform can 

calculate the traffic volume which passes through its start, middle and end gates.  

Zone is Bi-Directional: This implies that the total volume of traffic on the road in both directions 

is measured. 

Day Type: This field represents the day of the week. As an attribute, it also includes "All Days," 

which is an aggregated metric for all seven days of the week. 

Day Part: This field displays the time of day in local time. Users can have the data subdivided 

into 1-hour or 15-minute epochs all through the day. 

Vehicle Type Zone Name

Zone Is 

Pass-

Through

Zone 

Direction 

(degrees)

Zone is Bi-

Direction
Day Type Day Part

Average Daily 

Segment Traffic 

(StL Volume)

Avg 

Segment 

Speed 

(kph)

Personal 11856-15128 yes 32 no 1: Monday (M-M) 05: 1:00am-1:15am 281 108

Personal 11856-15128 yes 32 no 1: Monday (M-M) 06: 1:15am-1:30am 421 105

Personal 11856-15128 yes 32 no 1: Monday (M-M) 07: 1:30am-1:45am 140 104

Personal 11856-15128 yes 32 no 1: Monday (M-M) 08: 1:45am-2:00am 702 100

Personal 11856-15128 yes 32 no 1: Monday (M-M) 10: 2:15am-2:30am 281 111

Personal 11856-15128 yes 32 no 1: Monday (M-M) 11: 2:30am-2:45am 140 120

Personal 11856-15128 yes 32 no 1: Monday (M-M) 12: 2:45am-3:00am 140 122

Personal 11856-15128 yes 32 no 1: Monday (M-M) 13: 3:00am-3:15am 140 84

Personal 11856-15128 yes 32 no 1: Monday (M-M) 14: 3:15am-3:30am 140 112

Personal 11856-15128 yes 32 no 1: Monday (M-M) 15: 3:30am-3:45am 140 124

Personal 11856-15128 yes 32 no 1: Monday (M-M) 17: 4:00am-4:15am 140 102

Personal 11856-15128 yes 32 no 1: Monday (M-M) 18: 4:15am-4:30am 421 118

Personal 11856-15128 yes 32 no 1: Monday (M-M) 20: 4:45am-5:00am 140 116
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Average Daily Segment Traffic (StL Volume): This traffic count metric is generated based on 

the processed GPS data by StreetLight Data's machine learning algorithm, expressed in number of 

vehicles per time epoch. 

Average Segment Speed (kph): Average speed is the arithmetic mean of all speed observations 

on a specific road segment throughout a specific time epoch, expressed in kilometres per hour. 

3.2.2 GTAModel V4.0 Outputs 

GTAModel V4.0 is the latest operational version of the integrated activity-based travel demand 

model that is used to study and anticipate travel patterns in the GTHA. The Travel Modelling 

Group (TMG) created this model, which is continually being updated (UofT Travel Modelling 

Group (TMG), 2022). 

GTAModel contains all 24-hour travel patterns, among which the AM peak period (6:00-9:00) is 

the focus of this study. From various outputs of this travel demand model, the roadway saturation 

rate (volume over capacity ratio) is employed in this study. This measure is calculated using 

GTAModel-based EMME road and transit assignment software. 

3.2.3 Road Network and Street Attributes 

The GTHA 2016 EMME network was developed by TMG and its partners. The information 

regarding the attributes of elements in this network is written in the Network Coding Standard 

(NCS), which is updated every five years when the region’s Transportation Tomorrow Survey 

(TTS) is undertaken. The EMME network contains nodes, links and transit lines, from which the 

links are the focus of the study. Some attributes are assigned to each link, including link, length, 

number of lanes, functional class, speed, lane capacity, and lane type. It should be noted that for 

each functional class a specific volume delay function is defined. The functional classes in NCS16 

are derived from the combination of multiple sources: NCS11, geometric design guide and 

GGHMv4 VDF definitions. Table 3.3 shows the link functional classes and VDF definitions in the 

NCS16. The GTAmodel Emme network has 50691 road segments that are clustered into 18 

classes.  
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Table 3.3-Link functional class and VDF definitions, Source: (UofT Travel Modelling Group (TMG), 2017) 
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3.2.4 DMTI Land-use Data 

This analysis makes use of the Desktop Mapping Technologies Inc. (DMTI) land use dataset, 

which contains historical data on land use patterns at the dissemination area (DA) scale. The land-

use percentage within a DA is divided into the following categories: residential, commercial, 

institutional, industrial, parks, open space, and water. This dataset contains 2001, 2006, 2011, and 

2016. The latest year is used for the analysis.  

The DMTI lands use data is spatially joined on the GTAmodel road network. When a road segment 

crosses several land-use areas, the land use allocated to that road segment is averaged over the 

intersecting region. 
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Chapter 4  

 Methodology 

4.1 Calibration Framework Structure and Specifications 

To replicate the true potential of transportation infrastructure supply, the analysis should be done 

for a typical day that has normal traffic operating conditions. In order to account for long-term 

planned and unexpected short-term incidents, a multi-step machine learning-based framework is 

proposed to clean, classify and calibrate traffic flow fundamental diagrams of various roadway 

functional classes in the GTHA. This framework is formed by three clustering algorithms that 

detect typical days, normal traffic conditions, and road functional classes in 3 consecutive stages. 

In the last stage of the framework, the cleaned and clustered data is utilized for VDF calibration. 

Figure 4.1 present the framework mentioned above. 

 

Figure 4.1-Three-stage clustering and calibration framework 
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Data acquisition and data cleaning are the preliminary steps of this framework. One morning peak 

hour run of the existing GTAModel-based Emme assignment is used to identify the road segments 

for data acquisition from StreetLight Data. Although the GTAModel's existing volume delay 

function is not well calibrated, the traffic assignment that uses the existing VDFs can provide an 

initial suggestion for selecting a congested road segment for further VDF calibration. Congested 

road segments are chosen based on a volume-to-capacity ratio. 791 road segments are selected 

from the 3642 road segments that have V/C greater than 0.9 in the network, which is shown in 

Figure 4.2. The reason for selecting the existing congested roadway is that we need to find the road 

segments that contain a wide range of data points of congested and uncongested traffic conditions 

across each day, which is necessary for avoiding sample selection bias in calibrating the VDF 

parameters. 

 

Figure 4.2-GTAModel Emme-based Road segments with V/C >0.9 
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After gathering the two primary traffic flow variables from the StreetLight platform, initial data 

cleaning is required. For instance, speed-flow pairs with a density lower than 5 veh/km/lane and 

speed lower than 95 percent of the maximum speed are deleted to eliminate the heavy trucks that 

have low speed at night. Additionally, data points containing only one variable from speed and 

flow are filtered out. 

For each road segment per each day, we have at most 96 15-minute-aggregated speed-flow pairs, 

which means a maximum of 192 features per day. The daily feature count may vary by day and 

road functional classes because GPS-equipped vehicles may not traverse the roadway during some 

times of the day.  

The raw speed-flow data points have a wide sparsity. There are varieties of incidents that result in 

traffic state variation, from short-term unexpected to long-term planned incidents. In order to filter 

long-term planned incidents and find the typical days, principal component analysis (PCA) 

combined with Bayesian Gaussian mixture clustering is used. For each road segment, each day 

with a maximum of 196 possible features is imported into the PCA. PCA is used to reduce the 

dimension of feature space while keeping most of the information of data. The score-loading biplot 

for the first and second principal components is shown in Figure 4.3. 

 

Figure 4.3-Scores-loadings biplot 
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After reducing the dimension of this feature vector, a clustering method was applied to build and 

find the clusters with different types of days. On the first and second components of PCA, several 

centroid-/density-/distribution-based clustering methods were applied and assessed, and the 

distribution-based technique was shown to be the most effective. To be more specific, Bayesian 

Gaussian mixture model clustering performed better when applied to the data. In addition, in the 

reduced feature space of PCA, it is noteworthy to see that both typical and untypical days follow 

a Gaussian distribution. The number of clusters is chosen to be two, which are labelled as typical 

days and untypical days. Weekends, holidays and other untypical days are considered as days that 

have long-term planned incidents, when less travel demand might be seen during these days. 

Typical days, which mainly consist of weekdays, are used for the next steps in the framework. 

Approximately two third of the year are grouped as typical days in this stage. Figure 4.4 illustrates 

the PCA scores plot after applying the Bayesian GMM clustering.  

 

Figure 4.4-PCA scores plot after applying Bayesian Gaussian mixture model clustering with n_cluster=2 
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Before getting to the next step in the framework, some features should be engineered for the 

purpose of this study. Because GTAModel is being run for the morning peak hour, the data used 

to build the VDF function should be consistent with this time frame. The data extracted from the 

StreetLight Data database is based on 15-minute intervals. On the data, a rolling window of one 

hour is conducted. The number of observations in this window must be four. For each window, 

the speed is averaged and the flows are summed. After applying the rolling window, a maximum 

of 93 pairs of 1-hour-aggregated speed-flow pairs for each day are generated. After applying a 

one-hour aggregation, the data is smoothed, accumulated, and less sparse, which facilitates the 

curve fitting. The 1-hour-aggregated density (veh/km/lane) is calculated based on the speed, flow 

and number of lanes. The lane-based density allows us to compare different road segments with 

different numbers of lanes. 

After retrieving the typical days and appropriate features, we can continue to the second clustering 

stage. This clustering step aims to remove days with unusual traffic patterns. Weather conditions 

or other short-term unexpected incidents, e.g. accidents, might produce this irregularity and 

between-day variability. The dissimilarity between the daily calibrated fundamental curves can be 

used to detect this issue and cluster the data to normal and abnormal traffic states. Hence, before 

applying the clustering algorithm to the data, calibration of traffic flow fundamental equations 

should be done on a daily basis. For the daily calibration, we have chosen the modified two-regime 

Greenshield model. This model consists of two parts: constant speed for the free-flow traffic 

condition and the modified Greenshield model for the congested traffic condition. As this model 

has a continuous form, it does not consider capacity drop, which helps to have less calibrated 

parameters to deal with in the next steps. The calibrated curve is drawn in Figure 4.5, and has the 

following mathematical formulation: 

{
 
 

 
 𝑣 = 𝑢𝑓 = 𝑣𝑖𝑛𝑡 × (1 −

𝑘𝑏
𝑘𝑗
)

𝛼

      (0 ≤ 𝑘 ≤ 𝑘𝑏)

𝑣 = 𝑣𝑖𝑛𝑡 × (1 −
𝑘𝑏
𝑘
)
𝛼

      (𝑘𝑏 ≤ 𝑘 ≤ 𝑘𝑗)

 

Where 𝑣 = 𝑠𝑝𝑒𝑒𝑑,  𝑢𝑓 = 𝑓𝑟𝑒𝑒 − 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑, 𝑘𝑏 = 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 − 𝑝𝑜𝑖𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑘 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦,  

𝑣𝑖𝑛𝑡 = 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛𝑡𝑒𝑐𝑒𝑝𝑡,  𝑘𝑗 = 𝑗𝑎𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑎𝑛𝑑 𝛼 = 𝑝𝑜𝑤𝑒𝑟 𝑡𝑒𝑟𝑚.  
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Figure 4.5-modified two-regime Greenshield traffic flow model calibrated with empirical data 

Among the three traffic fundamental equations, we have chosen the speed-density equation 

because it has a one-to-one mapping function which is suitable for the calibration. The speed-

density equation can be easily transformed into speed-flow and flow-density equations by using 

the fundamental traffic flow equation. The modified Greenshield model has four parameters that 

can be calibrated with empirical data. The jam density is considered to be constant and equal to 

144 veh/km/lane, which is based on the assumption that the distance between vehicles in a traffic 

jam is 7 meters. Therefore, free flow speed, breaking point density and power term are the three 

variables for calibration. For each day, the parameters of the speed-density equation are calibrated. 

The nonlinear least square method is used for the curve fitting procedure. The mathematical 

formulation of the least squares method (LSM) is expressed as follows: 

min𝑍 =  ∑(𝑣𝑖 − 𝑣(𝑘𝑖, 𝑚))
2

𝑃

𝑖=1
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Where 𝑣𝑖 and 𝑣(𝑘𝑖, 𝑚) are observed and estimated speeds corresponding to density 𝑘𝑖. The 

optimization has been done with ’trust-constr’ method in Scipy library in python, which minimizes 

a scalar function subjected to constraints. Optimization settings are defined in Table 4.1 and Table 

4.2: 

Table 4.1-Parameter optimization setting for highways 

Parameter Initial value Optimization bound 

𝑣𝑖𝑛𝑡  100 ≥ 0 

𝑘𝑏 0 [0,25] 

𝛼 2 ≥ 1.5 

Table 4.2-Parameter optimization setting for all roadways excluding highways 

Parameter Initial value Optimization bound 

𝑣𝑖𝑛𝑡  100 ≥ 0 

𝑘𝑏 0 = 0 

𝛼 2 ≥ 1.5 

Since we calibrate on a daily basis and may not have enough data in the congested regime, the 

approach does not account for sample selection bias. At the end of the calibration process, we have 

a matrix with N*3 arrays, in which N is the number of rows (date of typical days) and columns are 

the three calibrated parameters. The clustering technique should be applied once the daily 

fundamental diagram calibration for the typical days has been completed. On the calibrated 

parameters, we have applied various connectivity-/centroid-/density-based clustering, and finally, 

hierarchical clustering with a modified affinity matrix is employed. The area between two 

calibrated curves is used as a measure of similarity between the traffic dynamics of different days. 

The area between curves is determined using 10 points from each daily calibrated curve to decrease 

computing costs. Other similarity measures can be employed to build the affinity matrix that is 

utilized in hierarchical clustering. For example, (Gu et al., 2018) employed Frechet distance. In 

the modified hierarchical clustering, the number of clusters is assumed to be 10. Any clusters that 

have a sample size lower than 30 are eliminated, which are assumed as a cluster of abnormal traffic 

state. In this clustering stage, another between-day variability is captured, which is unexpected 
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short-term incidents. Towards the end of this procedure, the cluster of typical days with normal 

traffic condition is extracted, as shown in Figure 4.6. For this cluster, the mean values of calibrated 

parameters are calculated for being used in the last stage of clustering. 

 

Figure 4.6-Daily calibrated speed-density diagram for one road segment before and after applying modified 

hierarchical clustering 

For each road segment, the first and second stages of clustering are conducted, and the mean 

calibrated curve is computed. By having one representative of each road segment's traffic 

performance, the next step is to find the clusters of roadway functional classes. All road segments 

with their mean calibrated parameters are imported in the modified hierarchical clustering. The 

area between the calibrated curves of two road segments is the similarity measure in this clustering. 

The number of clusters is manually tuned depending on user assessment. Figure 4.7 depicts a 

speed-density diagram with 7 clusters after applying modified hierarchical clustering. 

After finding the road functional classes, we should go through the last stage of the framework, 

which is VDF calibration. Data points for all road segments within one cluster are used for VDF 

calibration. Various VDF formulations are tested, and the one with the highest goodness of fit is 

chosen.  
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Figure 4.7-Speed-density diagram for all road segments after applying modified hierarchical clustering with 

n_cluster = 7 
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Chapter 5  

 Results and Discussion 

5.1 Result 

In this chapter, we put our proposed framework into practice using observed data to assess the 

performance of the region's various road functional classes. The calibrated parameters of the traffic 

flow fundamental diagram are shown. Using these calibrated diagrams as a basis, the free flow 

speed and capacity are computed and compared against the NCS16's reported measures. Some 

adjustments are suggested so that the new version of NCS reflects the newly 

calibrated performance measures. To date, NCS22 is under final edit, and the result of this thesis 

can be reflected in NCS22. 

5.1.1 Calibrated Parameters for all Sampled Road Functional Classes 

This section presents the existing and newly-calibrated free flow speed and capacity for all sampled 

road functional classes. As shown in Figure 5.1, the existing free-flow speed in NCS16 for 

roadways in the City of Toronto's downtown core is mostly 40 to 60 km/hr, compared to GTHA 

borders which are mostly 70 to 90 km/hr. Based on NCS16, highways have a free flow speed of 

100 to 110 km/hr. The calibrated free-flow speed based on observed data has the same pattern as 

the NCS16 metrics.  

The reported capacity in NCS16 ranges from 400 to 2000 veh/hr/lane, although the calibrated 

capacity based on empirical data reveals another story. The calculated capacity ranges between 

400 to 3500 veh/hr/lane, where this upper bound exceeds maximum reported capacities in previous 

works in literature (see Figure 5.2). The possible reason for this inconsistency is discussed in 

Section 6.2. 

The difference between existing and calculated values of free flow speed and capacity is illustrated 

in Figure 5.3. This diagram shows that most free flow speed values in NCS16 are overestimated 

compared to reality. Furthermore, if we exclude highways, capacity values are well-estimated 

compared to NCS16. Regarding the highways, the capacity is underestimated in NCS16. 

Figure 5.4 can help us compare the values of observed data with existing values in NCS16 in more 

detail. Roughly speaking, the data points are mostly near the 45-degree line in both capacity and 
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free flow speed curve. Most free flow data points are below this inclined line, which means the 

NCS16 is overestimating this metric. In regards to the capacity, if we exclude the high capacity 

values, most of the capacity values are overestimated in NCS16. Real-world data shows that for 

high capacity values, which are mostly highways, NCS16 underestimates the capacity.  

Boxplots of Figure 5.5 demonstrates how free flow speed and capacity values vary over road 

segments with a similar number of lanes. Road segments with 1 or 2 lanes have lower values of 

free flow speed and capacity values compared to the road segments that have 3 or more lanes. 

Links with 3 lanes have the widest range of free flow speed and capacity compared to other links.  

 

Figure 5.1- Free flow speed based on NCS16 (left) and calibrated data (right), for all VDF codes 
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Figure 5.2-Capacity based on NCS16 (left) and calibrated data (right), for all VDF codes 

 

Figure 5.3- Existing and calculated values difference of free flow speed and capacity, for all VDF codes 
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Figure 5.4-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , for all 

VDF codes 

 

Figure 5.5-Box plot of calibrated free flow speed (left) and capacity (right) classified by the number of lane, for all 

VDF codes 
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Two of the VDF codes are covered in greater detail in the remaining parts of this section. In 

Appendix 1, there are diagrams for other VDF codes. 

Highway Ramps (VDF code: 13) 

The majority of the free-flow speeds posted in NCS15 for the highway ramps are 70 km/hr, with 

a range of 50 to 110 km/hr (Figure 5.6). Highway ramps in NCS16 can currently accommodate 

800 to 2000 vehicles per hour per lane, with 1555 being the average (Figure 5.7). The number of 

lanes ranges from 1 to 3 (Figure 5.8). The calibrated free flow speed ranges from 50 to 110 km/hr. 

The highway ramps south of the financial district have lower free-flow speeds compared to other 

locations. As opposed to highway-to-highway ramps, which connect two fast channels of traffic, 

these downtown core highway ramps connect highways to arterials, which run at slower speeds. 

As shown in Figure 5.9, the NCS16 underestimates the capacity and free-flow speed for highway-

to-highway ramps, which could be handled similarly to highway segments. 

 

Figure 5.6-Free flow speed based on NCS16 (left) and calibrated data (right), VDF code: 13 
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Figure 5.7-Capacity based on NCS16 (left) and calibrated data (right), VDF code: 13 

 

Figure 5.8-Number of lanes, VDF code: 13 
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Figure 5.9- Existing and calculated values difference of free flow speed and capacity, VDF code: 13 

Downtown City Center Arterials (VDF code: 50) 

As can be seen from Figure 5.10 and Figure 5.11, the existing free-flow speed and capacity in 

NCS16 for the downtown city center arterial roads are in the range of 40 to 50 km/hr and 500 to 

700 veh/km/lane, respectively. This region has road segments with a varying number of lanes, 

most of which have 2 lanes per direction (Figure 5.12). The calibrated free flow speed ranges 

between 20 to 55 km/hr in this region. Road segments with slower travel speeds are found in the 

downtown area close to the financial district. In this region, the intersections are spaced closely 

together, making it difficult for drivers to accelerate or decelerate rapidly, potentially lowering the 

free-flow speed. In addition, the slower free-flow speed in this area may have been caused by a 

pedestrian crossing the roadway or by streetcars, which may have blocked a part of the street. 

The stated free-flow speed in NCS16 is inconsistent with reality (see Figure 5.13), particularly for 

those reported on Dundas Street, where there is a significant discrepancy. For this specific street, 

observed free-flow speeds are in the range of 20 to 30 km/hr, but they are stated to have 50 km/hr 

free-flow speed in NCS16.  
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Figure 5.10-Free flow speed based on NCS16 (left) and calibrated data (right), VDF code: 50 

 

Figure 5.11- Capacity based on NCS16 (left) and calibrated data (right), VDF code: 50 
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Figure 5.12-Number of lanes, VDF code: 50 

 

Figure 5.13- Existing and calculated values difference of free flow speed and capacity, VDF code: 50 
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5.1.2 Road Physical Attributes Distribution among Each Cluster 

The traffic flow calibrated parameters are imported in the third stage of clustering, and new road 

functional classes are exported. A various number of clusters are tested, and 4 is chosen among 

them. Figure 5.14 shows the clustered road segments after applying modified hierarchical 

clustering, and Figure 5.15 demonstrates the spatial distribution of those segments. Clusters are 

named 'Urban', 'Suburban', 'Rural', and 'Freeway'. As illustrated in Figure 5.15, 'Urban' cluster is 

primarily associated with the City of Toronto's downtown core. ‘Suburban’ and ‘Rural’ clusters 

are mostly on the GTHA's periphery. Highway segments are mostly found in 'Freeway' cluster. 

Figure 5.16 shows the distribution of the number of lanes within each cluster. The majority of 

'Freeway' cluster is assigned to roadways with three or more lanes. In contrast, the major part of 

'Rural' cluster is allocated to roadways with 2 or 1 lane/s. 'Urban' and 'Suburban' clusters are nearly 

identical in terms of the proportion of lanes, with both having a great number of road segments 

with two lanes. 'Freeway', 'Rural', 'Suburban', and 'Urban' clusters have the highest to the lowest 

proportion of higher-posted-speed road segments, respectively (Figure 5.17). The proportion of 

land use adjacent to the roadway is demonstrated in Figure 5.18. Land use near the roadway in 

'Urban' and 'Rural' clusters is mostly residential and open area, respectively.  

 

Figure 5.14-Traffic flow fundamental diagrams of all sampled road segments after applying modified hierarchical 

clustering with n_cluster = 4 
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Figure 5.15-Clustered road segments, n_cluster = 4 

 

Figure 5.16-Distribution of 'number of lanes' within each cluster 
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Figure 5.17-Distribution of posted speed within each cluster 

 

Figure 5.18-Distribution of land use category within each cluster 
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Chapter 6  

 Conclusions, Limitations, and Future Opportunities 

6.1 Conclusions 

The existing roadway network should be prepared to accommodate future mobility 

challenges, solutions, and technologies. It will be easier to plan appropriately for the future of 

transportation and urban development if we have a clear understanding of what we presently have 

on the ground. The performance of the current roadways is one of these transportation-related 

issues that should be taken under investigation. Hence, the purpose of this study was to analyze 

and compare the existing roadway performance metrics with the newly-calibrated one by using the 

emerging data sources. This study has allowed us to reproduce realistic measures of infrastructural 

supply in the static traffic assignment and gave us better insight of real-world context-specific 

congestion behaviour. 

This research provides details on the existing roadway performance metrics in NCS16. For 

instance, the calibrated fundamental diagram for the sampled roadways shows that the existing 

free-flow speed in NCS16 is overestimated compared to real-world calibrated data. The reason for 

this could be that the free flow speed used in GTAModel-based Emme traffic assignment is the 

posted speed of the roadway. This number may be lower or higher than the observed free-flow 

speed. If highways are excluded, the capacity value appears to be well estimated. However, the 

capacity of highways is underestimated in NCS16. 

6.2 Limitations of the Study 

Investigating the reliability and usefulness of StreetLight Data as a data source for the calibration 

of the supply side of the travel demand models was one of the goals of this project. It is innovative 

to have a platform where traffic-related data is extracted from mobile crowd-sourced sensors. 

A broad spatial and temporal resolution of Streetlight data gives a unique opportunity to 

investigate any selected road segment or traffic analysis zone in the network. However, after 

digging deeper into the data, it appears that StreetLight Data generated metrics are not precise 

enough to model traffic behaviour. In some cases, the observed traffic volume data exceeds the 

capacity limits of the roadway. Although the StreetLight Data platform offers the calibration 

option for data, loop detector data was not available throughout the entire year of this study. 
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Average daily traffic (ADT) for each week of the year was required for this purpose. By importing 

average annual daily traffic (AADT) as a calibration value to StreetLight Data, it gives similar 

values for all weeks through the entire year for the segment under study, which is not the data 

required for our proposed framework. Overall, the only option available for use in this study was 

StreetLight Data volume estimates, which were not reliable, particularly for some highway 

sections.  

The traditional performance model used in static macroscopic traffic models is not able to portray 

the inherent dynamic nature of congestion, including but not limited to queue accumulation and 

discharge, spillback, wave propagation, and capacity drop (Gentile et al., 2005). Hence, the 

dynamic traffic assignment was proposed to capture the complex traffic behaviour which was 

simplified in the conventional models. In DTA, route and departure time choices are modelled in 

a time-varying environment. The substantial data gathering, development, and calibration 

necessary for a dynamic model for the entire city is regarded to be excessively time-consuming 

and costly. Nevertheless, in several big urban regions, such as the GTHA, dynamic models are still 

under development. The roadway performance models in the dynamic models can be classified 

and calibrated using the framework developed in this study. The only difference is that speed-

density data points should be used for calibration in comparison to travel time-flow data points 

used in VDF calibration. This procedure can all be done using the same dataset. Many additional 

supply and demand characteristics need to be calibrated in addition to this performance model in 

the dynamics models, which are out of the scope of this study. 

6.3 Future Research Opportunities 

Avenues for further research can be classified into these topics:  

First, this study was conducted using processed location-based service (LBS) data, a new source 

of big data which is generated by GPS-equipped devices. The reported speed and flow values of 

this data source may not match/replicate the accurate traffic measure of the field. The reason for 

this is that sampled GPS-enabled probe vehicle data and machine learning techniques are used to 

estimate the speed and volume values. Therefore, one could use loop detector data along with 

Google Map API or video-based measurement as initial data to be imported into the framework 

suggested in this study. 
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Second, in regards to model spatial transferability, the proposed framework is not region-specific. 

It can be used anywhere else in the world. This processing pipeline can be run by any source of 

traffic data that has speed and volume values. It should be noted that the temporal resolution and 

availability of data must be sufficient to produce accurate estimates. To be more specific, intervals 

of data should be at most 1 hour, and the data should be available at least for 3 months. As machine 

learning methods are data-hungry, more days and finer temporal resolution of the data may lead 

to better performance.   

Third, StreetLight Data, the data source used in this study, contains truck data for the road 

segments by the weighting class. However, this measurement is not a precise count of trucks; 

rather, it only depicts relative truck activity on the road segment. To evaluate mixed traffic 

behaviour, one can scale up Streetlight's relative truck activity data by using the ground-truth 

number of trucks for Ontario's highways. This data source was not available at the time of 

this study. 

Fourth, a GTAModel-based Emme assignment run laid the groundwork for the selection of the 

road segment sample in this study. This could be a good first guess for identifying the road 

segments that are congested at some times of the day. However, there are some other reliable 

methods that can be used for this. For instance, one could use historical (typical) traffic data from 

Google Maps, which is accessible via their website/API. In this Google Maps feature, four 

different colours are used, with the red colour indicating the congested road segment. 

Fifth, the congested regime of VDFs, for which we lack empirical data, can be calibrated using 

observed route choice data. One may determine which VDF curves could replicate the same 

congestion pattern throughout the transportation system by comparing the static traffic 

assignment's assigned route with the observed route choice behaviour. The historical route choice 

behaviour is available via the StreetLight Data platform. There were two issues in using this data 

for this thesis. First, the StreetLight's observed route between the origin and the destination 

contained some discontinuities, some of which, but not all, could be manually corrected. Second, 

the routes between each pair of origin and destination are not reported by the Emme static traffic 

assignment, which is required as a component in the defined optimization problem. Utilizing 

Aimsun software, which produces the OD route for static traffic assignment, may be the answer to 
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this problem. At the time of this study, GTAModel an Aimsun-based traffic assignment model for 

the GTHA was under construction.  

Sixth, the phenomenon of the capacity drop is not taken into account for the calibration of the 

roadway fundamental diagram. One may calibrate the fundamental diagram using a discontinuous 

two regime traffic flow fundamental equation, which considers this phenomenon. Also, the jam 

density is considered to be 144 veh/km/lane in this study, which should be investigated in more 

detail. 

Seventh, since this clustering framework is built using a multistage unsupervised machine learning 

method, there is no tool to assess its performance. One may use the calendar and weather data to 

label this unlabeled speed-flow data and create a confusion matrix to see how accurate this 

approach is at recognizing holidays and weather events from normal days. 

Eight, sensitivity analysis tests can be done on the model output based on using the distributions 

of parameters and input variables. This can be accomplished using a variety of techniques, such as 

the random resampling technique or Monte Carlo simulation. At least three metrics can be used to 

examine the model's output: vehicle kilometers on a single link and throughout the entire network, 

travel resistance within the network, and average speed at the link level (Manzo et al., 2014). 

Furthermore, the variability of uncertainty within different road functional classes can be assessed 

(Manzo, 2013). 

Ninth, one may test different VDFs in EMME traffic assignment software and compare the results 

with the travel time studies of the Ontario Ministry of Transportation.  

Finally, building on this study, one can develop area-based cost flow functions, known as 

macroscopic cost flow (MCF) functions to explore network topological effects on network traffic 

performance (Wong & Wong, 2016). 
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Appendix 1  

Highway (VDF code: 11) 

 

Figure 6.1-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 11 

 

Figure 6.2-Calibrated capacity (right) and free flow speed (left), VDF code: 11 
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Figure 6.3-Number of lanes, VDF code: 11 

 

Figure 6.4-Existing and calculated values difference of free flow speed and capacity, VDF code: 11 
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Figure 6.5-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 11 

Highway Ramps (VDF code: 13) 

 

Figure 6.6-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 13 
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Figure 6.7-Calibrated capacity (right) and free flow speed (left), VDF code: 13 

 

Figure 6.8-Number of lanes, VDF code: 13 
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Figure 6.9--Existing and calculated values difference of free flow speed and capacity, VDF code: 13 

 

Figure 6.10-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 13 
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Rural Long Distance Arterials (VDF code: 20) 

 

Figure 6.11-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 20 

 

Figure 6.12-Calibrated capacity (right) and free flow speed (left), VDF code: 20 
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Figure 6.13-Number of lanes, VDF code: 20 

 

Figure 6.14-Existing and calculated values difference of free flow speed and capacity, VDF code: 20 
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Figure 6.15-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 20 

Rural Major Country Road (VDF code: 21) 

 

Figure 6.16-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 21 
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Figure 6.17-Calibrated capacity (right) and free flow speed (left), VDF code: 21 

 

Figure 6.18-Number of lanes, VDF code: 21 
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Figure 6.19-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 21 

Rural Collector Road (VDF code: 22) 

 

Figure 6.20-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 22 
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Figure 6.21-Calibrated capacity (right) and free flow speed (left), VDF code: 22 

 

Figure 6.22-Number of lanes, VDF code: 22 
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Figure 6.23-Existing and calculated values difference of free flow speed and capacity, VDF code: 22 

 

Figure 6.24-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 22 
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Suburban Principal Urban Arterials (VDF code: 30) 

 

Figure 6.25-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 30 

 

Figure 6.26-Calibrated capacity (right) and free flow speed (left), VDF code: 30 

 



88 

 

 

Figure 6.27-Number of lanes, VDF code: 30 

 

Figure 6.28-Existing and calculated values difference of free flow speed and capacity, VDF code: 30 
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Figure 6.29-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 30 

Suburban Collector Road (VDF code: 31) 

 

Figure 6.30-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 31 
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Figure 6.31-Calibrated capacity (right) and free flow speed (left), VDF code: 31 

 

Figure 6.32-Number of lanes, VDF code: 31 
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Figure 6.33-Existing and calculated values difference of free flow speed and capacity, VDF code: 31 

 

Figure 6.34-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 31 
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Major Urban Arterials (VDF code: 40) 

 

Figure 6.35-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 40 

 

Figure 6.36-Calibrated capacity (right) and free flow speed (left), VDF code: 40 
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Figure 6.37-Number of lanes, VDF code: 40 

 

Figure 6.38-Existing and calculated values difference of free flow speed and capacity, VDF code: 40 
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Figure 6.39-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 40 

Minor Urban Arterials (VDF code: 42) 

 

Figure 6.40-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 42 
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Figure 6.41-Calibrated capacity (right) and free flow speed (left), VDF code: 42 

 

 

Figure 6.42-Number of lanes, VDF code: 42 



96 

 

 

Figure 6.43-Existing and calculated values difference of free flow speed and capacity, VDF code: 42 

 

 

Figure 6.44-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 42 
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Downtown/City Center Roads (VDF code: 50) 

 

Figure 6.45-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 50 

 

 

Figure 6.46-Calibrated capacity (right) and free flow speed (left), VDF code: 50 
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Figure 6.47-Number of lanes, VDF code: 50 

 

Figure 6.48-Existing and calculated values difference of free flow speed and capacity, VDF code: 50 
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Figure 6.49-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 50 

 

Urban Collector Roads (VDF code: 51) 

 

Figure 6.50-Capacity (right) and free flow speed (left) based on NCS16, VDF code: 51 
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Figure 6.51-Calibrated capacity (right) and free flow speed (left), VDF code: 51 

 

Figure 6.52-Number of lanes, VDF code: 51 
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Figure 6.53-Existing and calculated values difference of free flow speed and capacity, VDF code: 51 

 

Figure 6.54-Comparison curve between existing and calibrated free flow speed (left) and capacity (right) , VDF 

code: 51 

 

 

 


